• Title/Summary/Keyword: Low temperature oxidation

Search Result 589, Processing Time 0.022 seconds

Variation of Nitrogen Removal Efficiency and Microbial Communities Depending on Operating Conditions of a CANON Process (CANON 공정에서 운전조건에 따른 질소 제거효율 및 미생물군집 변화)

  • Jo, Kyungmin;Park, Younghyun;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.332-339
    • /
    • 2015
  • Nitrogen removal is one of the most important issues about wastewater treatment because nitrogen is a primary pollutant caused various problems such as eutrophication. We developed a CANON microbial community by using AOB and ANAMMOX bacteria as seeding sources. When 100 mg-N/L of influent ammonium was supplied, the DO above 0.4 mg/L showed a very low TN removal efficiency while the DO of 0.3 mg/L showed TN removal efficiency as high as 71.3%. When the influent ammonium concentration was reduced to 50 mg/L, TN removal efficiency drastically deceased. However, TN removal efficiency was recovered to above 70% after 14 day operation when the influent nitrogen concentration was changed again from 50 mg-N/L to 100 mg-N/L. According to the operating temperature from $37{\pm}1^{\circ}C$ to $20{\pm}1^{\circ}C$, TN removal efficiency also rapidly decreased but gradually increased again up to $70.0{\pm}2.6$%. The analysis of PCR-DGGE showed no substantial difference in microbial community structures under different operational conditions. This suggests that if CANON sludge is once successfully developed from a mixture of AOB and ANAMMOX bacteria, the microbial community can be stably maintained regardless of the changes in operational conditions.

Isolation and Characterization of a Formate Dehydrogenase cDNA in Poplar (Populus alba ${\times}$ P. glandulosa) (현사시나무에서 Formate Dehydrogenase cDNA의 분리와 특성 구명)

  • Bae, Eun-Kyung;Lee, Hyoshin;Lee, Jae-Soon;Choi, Young-Im;Yoon, Seo-Kyung;Eo, Soo Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.331-337
    • /
    • 2013
  • Formate dehydrogenase (FDH), catalyzing the oxidation of the formate ion to carbon dioxide, is known as the stress protein in response to drought, low temperature and pathogen infection. To study the functions of FDH in poplar (Populus alba ${\times}$ P. glandulosa), we isolated a FDH cDNA (PagFDH1) and examined its expressional characteristics. The PagFDH1 is 1,499 base pairs long and encodes a putative 388 amino acid protein with an expected molecular mass of 42.5 kDa. The PagFDH1 protein has N-terminal mitochondria signal peptide and $NAD^+$ binding domain. Southern blot analysis indicated that a single copy of the PagFDH1 is present in the poplar genome. PagFDH1 is expressed highly in the suspension cells (especially in the lag and early exponential phases) and moderately in roots, flowers and leaves. ABA-mediated enhanced expression of PagFDH1 in response to drought and salt stress treatments indicates that the gene product could play an important role in the development of stress resistant trees.

Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package (수치해석을 이용한 팬 아웃 웨이퍼 레벨 패키지의 휨 경향 및 신뢰성 연구)

  • Lee, Mi Kyoung;Jeoung, Jin Wook;Ock, Jin Young;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • For mobile application, semiconductor packages are increasingly moving toward high density, miniaturization, lighter and multi-functions. Typical wafer level packages (WLP) is fan-in design, it can not meet high I/O requirement. The fan-out wafer level packages (FOWLPs) with reconfiguration technology have recently emerged as a new WLP technology. In FOWLP, warpage is one of the most critical issues since the thickness of FOWLP is thinner than traditional IC package and warpage of WLP is much larger than the die level package. Warpage affects the throughput and yield of the next manufacturing process as well as wafer handling and fabrication processability. In this study, we investigated the characteristics of warpage and main parameters which affect the warpage deformation of FOWLP using the finite element numerical simulation. In order to minimize the warpage, the characteristics of warpage for various epoxy mold compounds (EMCs) and carrier materials are investigated, and DOE optimization is also performed. In particular, warpage after EMC molding and after carrier detachment process were analyzed respectively. The simulation results indicate that the most influential factor on warpage is CTE of EMC after molding process. EMC material of low CTE and high Tg (glass transition temperature) will reduce the warpage. For carrier material, Alloy42 shows the lowest warpage. Therefore, considering the cost, oxidation and thermal conductivity, Alloy42 or SUS304 is recommend for a carrier material.

Nitrite Removal by Autotrophic Denitrification Using Sulfur Particles (황입자를 이용한 독립영양탈질에서의 아질산성질소 탈질 조건 탐색)

  • Kang, Woo-Chang;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.3
    • /
    • pp.221-226
    • /
    • 2010
  • Swine wastewater contains high amounts of organic matter and nutrients (nitrogen and phosphorus). The biological nitrogen removal can be achieved by nitrification and denitrification processes. Nitrification-denitrification can be performed via nitrite which is called as the short-cut process. This Short-cut process saves up to 25% of oxygen and 40% of external carbon during nitrification and denitrification. In this study, the batch tests were conducted to assess the different parameters for the nitrite sulfur utilizing denitrification, such as alkalinity, temperature, initial nitrite concentration, and dissolved oxygen. The experimental results showed that the nitrite removal efficiency of the reactor was found to be over 95% under the optimum condition ($30^{\circ}C$ and sufficient alkalinity). Autotrophic nitrate denitrification was inhibited at low alkalinity condition showing only 10% removal efficiency, while nitrite denitrification was achieved over 95%. The nitrite removal rates were found similar at both $20^{\circ}C$ and $30^{\circ}C$. In addition, nitrite removal efficiencies were inhibited by increasing oxygen concentration, but sulfate concentration increased due to sulfur oxidation under an aerobic condition. Sulfate production and alkalinity consumption were decreased with nitrite compared those with nitrate.

Fuel Properties of Various Biodiesels Derived Vegetable Oil (다양한 식물성유지에서 유래된 바이오디젤의 연료 특성)

  • Kim, Jae-Kon;Park, Jo Yong;Jeon, Cheol Hwan;Min, Kyong-Il;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Jin-Hui
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.35-48
    • /
    • 2013
  • Biodiesel is an alternative diesel fuel which can be obtained from the transesterification of vegetable oils, animal fats and waste cooking oil. The objective of this study is to evaluate the properties of biodiesel obtained from different feedstocks (soybean, waste cooking, rapeseed, cottonseed and palm oils). The biodiesel derived from different feedstocks was analyzed for FAME (fatty acid methyl esther) content, kinematic viscosity, flash point, CFPP (cold filter plugging point) and glycerin content. The quality of biodiesel was tested according to the Korean and European standard (EN14214, requirements and test method for biodiesel fuel). The biodiesels derived from soybean, waste cooking, rapeseed and cottonseed oils contain high amount of unsaturated fatty acid, while palm biodiesel is dominated by saturated fatty acid. The fuel properties of biodiesel, such as low temperature performance, kinematic viscosity and oxidation stability are correlated with the FAME composition components in biodiesel.

Groundwater Contamination of Noroviruses in Busan, Ulsan, and Gyeongsangnam-do, Korea (부산, 울산 및 경상남도 지역의 지하수 중 norovirus 오염실태 조사)

  • Park, Byung-Ju;Oh, Hae-Ri;Kang, Ho-Young;Jang, Kyung-Lib
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.819-828
    • /
    • 2011
  • To inspect norovirus contamination of groundwater in south eastern areas of Korea, a systematic survey of groundwater in Busan, Ulsan, and Gyeongsangnam-do was performed for two years from 2009 to 2010. For this purpose, we first optimized the nested reverse transcription-PCR condition by designing two sets of primers for the detection of norovirus genogroups, GI and GII. Of 145 samples, 21 (25.9%) and 15 (23.4%) were norovirus positive in the dry season (April to June) and wet season (July to August), respectively. The detection frequencies of norovirus in Busan, Ulsan, and Gyeongsangnam-do were 15%, 7%, and 32%, respectively, reflecting a geographical difference in their distribution. The GI and GII isolates were 5 and 31, respectively, indicating the prevalence of GII in the tested areas. According to phylogenetic analysis of their nucleotide sequences, all of the GI isolates were identified to genotype GI.5 whilst the GII isolates were divided into two genotypes, GII.3 and GII.4. Neither physical-chemical parameters such as pH, temperature, oxidation-reduction potential, and dissolved oxygen, nor microbial indicators of water quality such as total bacteria, total coliforms, and Escherichia coli were statistically correlated with contamination of norovirus in the groundwater. Interestingly, however, the presence of norovirus was closely correlated with low turbidity (<0.50 NTU). The present study suggests that periodical monitoring of norovirus in groundwater is necessary to prevent epidemic waterborne diseases and to secure better sanitary conditions for public health.

Determination of Optimal Storage Condition for Pre-packed Hanwoo Loin

  • Seol, Kuk-Hwan;Park, Tu San;Oh, Mi-Hwa;Park, Beom-Young;Cho, Seong In;Lee, Mooha
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.390-394
    • /
    • 2013
  • The aim of this study was to determine the optimal storage condition of pre-packed Hanwoo beef without freezing. Hanwoo loin was purchased from a local distributor at 48 h after slaughter, then sliced in $1.5{\pm}0.5$ cm thickness, and packed in a polyethylene (PE) tray covered with linear low-density polyethylene (LLDPE) film. The studied factors to set the optimal storage condition were chamber temperature (5, 2.5 and $-1^{\circ}C$ for 14 d), cooling method (direct and indirect cooling system), and ultraviolet (UV) light irradiation for beef surface sterilization (0, 30, 60, and 120 min). The changes of pH, thiobarbituric acid reactive substances (TBARS) and number of aerobic bacteria were measured during storage. Beef samples stored in $-1^{\circ}C$ showed the minimal increasing rate in TBARS and microbial growth. After 15 d of storage, there was no significant difference in pH and TBARS values. However, the microbial population of beef stored in direct type cooling chamber ($4.25{\pm}0.66$ Log CFU/g) was significantly lower than that of beef stored in indirect type chamber ($6.47{\pm}0.08$ Log CFU/g) (p<0.05). After 4 d of storage, 60 or 120 min UV light irradiated beef samples showed significantly lower microbial population, and at 14 d of storage, 60 min UV irradiated beef sample showed significantly lower microbial population ($3.14{\pm}0.43$ Log CFU/g) than control ($4.46{\pm}0.13$ Log CFU/g) (p<0.05). However, TBARS values of 60 or 120 min UV light irradiated beef samples were significantly higher than non-irradiated beef sample after 4 d of storage (p<0.05).

Highly Dispersed Supported Gold Catalysts -I. Effect of Gold Addition and Active Site Formation- (고분산 담지 금촉매 - I. 금의 첨가 효과 및 활성점 생성 -)

  • Ahn, Ho-Geun;Niiyama, Hiroo
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.285-294
    • /
    • 1994
  • Some supported gold catalysts were prepared by impregnation and coprecipitation methods. Effect of gold addition and active sloe formation were studied by investigating particle sizes of gold, amounts of oxygen adsorbed, adsorption properties of CO and NO, and reduction and oxidation properties, etc.. The gold particles of the catalyst by impregnation were irregular and very large as 30~100 nm, but those by coprecipitation were uniform and ultra-fine as about 4 nm. On $Au/Al_2O_3$ catalyst, the addition of gold to inactive $Al_2O_3$ caused the decomposition of $N_2O$, and CO was not irreversibly adsorbed while $O_2$ was atomically and irreversibly adsorbed. The adsorption sites of oxygen were attributed to the active sites which were restricted to the circumference of hemispherical gold particle-support interface rather than all atoms on the surface of gold particle. Also, CO was reversibly and irreversibly adsorbed on $Al_2O_3$ at low temperature, and the addition of gold weakened both reversible and irreversible adsorptions. The affinity for CO on $Au/Co_3O_4$ catalyst decreased conspicuously compared to $Co_3O_4$. The effect of gold addition did not appear in reduction step but did remarkably in reoxidation step; the added gold promoted the reoxidation of the reduced cobalt atoms.

  • PDF

Quality Changes of Dried Lavers during Processing and Storage 2. Quality Stability of Roasted Lavers during Processing and Storage (김의 가공 및 저장중의 품질변화 2. 배소김의 가공 및 저장중의 품질안정성)

  • LEE Kang-Ho;SONG Seung-Ho;JEONG In-hak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.20 no.6
    • /
    • pp.520-528
    • /
    • 1987
  • Quality stability of roasted lavers during heat treatment and storage was investigated measuring the changes in pigments including chlorophyll a, carotenoids and biliproteins, fatty acids and free amino acids as the major quality factors. In roasting of fried lavers, carotenoids were found to lie more stable than chlorophyll a, and biliproteins were most heat labile. The overall heat stability of the pigments depended upon heating time and temperature. Chlorophyll a and carotenoids were retained more than $90\%$ in the casts of roasting for 90 min. at $60^{\circ}C;\;60min.\;at\;80^{\circ}C;\;10\;min.\;at\;100^{\circ}C;\;or\;5min.\;at\;150^{\circ}C$ while biliproteins remained about $70\%$. The lipids of dried lavers including polyunsaturated fatty acids appeared rather heat stable when compared to the stability of pigments under the same conditions of roasting. Spray of sesame oil or seasoning solutions on the surface of lavers after roasting seemed desirable for stabilizing pigments and free amino acids during storage particularly at low water activity. And that was also benefit for the protection of polyenoic fatty acids from rapid progress of oxidation during storage. Free amino acids were reduced fast during roasting, especially most of threonine and glycine while glutamic acid was rapidly lost during the storage.

  • PDF

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode (ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구)

  • Oh, In-Don;Kim, Samantha;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.164-171
    • /
    • 2014
  • A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.