• Title/Summary/Keyword: Low temperature oxidation

Search Result 587, Processing Time 0.032 seconds

The Effect of Biodiesel Oxidation Deterioration on Emission (바이오디젤의 산화가 배출가스에 미치는 영향)

  • Song, Hoyoung;Lee, Minho;Kim, Kiho;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.220.2-220.2
    • /
    • 2011
  • Biodiesel and biodiesel blend fuel are receiving increasing attention as alternative fuels for diesel engines without substantial modifications. Biodiesel fuels and blending have been widely studied and applied in diesel engine because of biodiesel's lower sulfur, lower aromatic hydrocarbon and higher oxygen content. Biodiesels have the potential to be oxidized in different condition. It has reported that oxidation deterioration of biodiesel is different in the condition of storage and oxidation causes chemical property change of methyl esters. Sunlight intensity, temperature, material of container and contact surface with oxygen are key dominant factors accelerating oxidation deterioration. In this study, we chose temperature among key oxidation conditions and metal container filled with biodiesel was heated at about $110^{\circ}C$ for 10 days in order to accelerate oxidation deterioration. To better understand the effect of biodiesel blends on emission, steady state tests were conducted on a heavy duty diesel engine. The engine was fueled with Ultra Low Sulphur Diesel(ULSD), a blend of 10% and 20%(BD10, BD20) on volumetric basis, equipped with a common rail direct injection system and turbocharger, lives up to the requirements of EURO 3. The experimental results show that the blend fuel of normal biodiesel with BD10 and BD20 increased NOx. The result of PM was similar to diesel fuel on BD10, but the result of PM on BD20 was increased about 63% more than its of diesel. The blend fuel of Oxidation biodiesel with BD10 and BD20 increased NOx as the results of normal biodiesel. But PM was all increased on BD10 and BD20. Especially THC was extremely increased when test fuel contains biodiesel about 140% more than its of diesel. Through this study, we knew that oxidation deterioration of biodiesel affects emission of diesel engine.

  • PDF

Characterization of an Oxidized Porous Silicon Layer by Complex Process Using RTO and the Fabrication of CPW-Type Stubs on an OPSL for RF Application

  • Park, Jeong-Yong;Lee, Jong-Hyun
    • ETRI Journal
    • /
    • v.26 no.4
    • /
    • pp.315-320
    • /
    • 2004
  • This paper proposes a 10-${\mu}m$ thick oxide layer structure that can be used as a substrate for RF circuits. The structure has been fabricated using an anodic reaction and complex oxidation, which is a combined process of low-temperature thermal oxidation (500 $^{\circ}C$ for 1 hr at $H_2O/O_2$) and a rapid thermal oxidation (RTO) process (1050 ${\circ}C$, for 1 min). The electrical characteristics of the oxidized porous silicon layer (OPSL) were almost the same as those of standard thermal silicon dioxide. The leakage current density through the OPSL of 10 ${\mu}m$ was about 10 to 50 $nA/cm^2$ in the range of 0 to 50 V. The average value of the breakdown field was about 3.9 MV/cm. From the X-ray photo-electron spectroscopy (XPS) analysis, surface and internal oxide films of OPSL prepared by a complex process were confirmed to be completely oxidized. The role of the RTO process was also important for the densification of the porous silicon layer (PSL) oxidized at a lower temperature. The measured working frequency of the coplanar waveguide (CPW) type short stub on an OPSL prepared by the complex oxidation process was 27.5 GHz, and the return loss was 4.2 dB, similar to that of the CPW-type short stub on an OPSL prepared at a temperature of 1050 $^{\circ}C$ (1 hr at $H_2O/O_2$). Also, the measured working frequency of the CPW-type open stub on an OPSL prepared by the complex oxidation process was 30.5 GHz, and the return was 15 dB at midband, similar to that of the CPW-type open stub on an OPSL prepared at a temperature of $1050^{\circ}C$ (1 hr at $H_2O/O_2$).

  • PDF

Oxidation characterization of VOCs(volatile organic compounds) over pt and ir supported catalysts (Pt와 Ir을 담지한 촉매에 의한 휘발성유기화합물들의 산화특성)

  • Kim, Moon-Chan;Yoo, Myong-Suk
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.130-138
    • /
    • 2005
  • Volatile organic compounds (VOCs) have been recognized as major contributor to air pollution. Catalytic oxidation in VOCs can give high efficiency at low temperature. In this study, monometallic Pt, Ir and bimetallic Pt-Ir were supported to $TiO_2$. Xylene, toluene and methyl ethyl ketone (MEK) were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and characterized by XRD, XPS and TEM analysis. Result reveal that Pt catalyst has higher conversion than Ir catalyst and Pt-Ir bimetallic catalysts. The existence of multipoint actives in, Pt-Ir bimetallic catalysts gives improved performance for the Pt metalstate. Bimetallic catalysts have higher conversion for VOCs than monometallic ones. The addition, VOCs oxidation follows first order kinetics. The addition of small amount of Ir to Pt promotes oxidation conversion of VOCs.

Multiple injection of permanganate and hypochlorite for manganese removal by oxidation combined with membrane filtration (산화-막여과에 의한 망간 제거 시 과망간산과 차아염소산 복합 주입의 효과)

  • Kwak, Hyoeun;Park, Jeongwon;Min, Sojin;Lim, Joowan;Kim, Keehong;Lee, Hosung;Nahm, Chang-Hyun;Park, Yong-Min;Park, Pyung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.211-220
    • /
    • 2018
  • The water containing soluble manganese may cause problems such as discolored water, unpleasant taste, fouling or scaling of pipes in water distribution system, and so on. Conventional water treatment processes using sand filtration or sedimentation after oxidation, however, cannot often meet manganese standard for drinking water. Two types of oxidants, potassium permanganate ($KMnO_4$) and sodium hypochlorite (NaOCl), were utilized at the same time for manganese oxidation, and then the precipitated manganese oxides were removed by low pressure membrane filtration in this study. In batch experiments, the multiple injection of both oxidants showed more effective manganese removal than did the single injection using either of them. Moreover, the deterioration of manganese removal at low temperature was less serious for the multiple injection than that for the single injection. Manganese removal by the continuous system of oxidation by multiple injection combined with membrane filtration was higher than those by batch experiments at the same oxidation conditions. In addition, less membrane fouling was observed for membrane filtration with oxidation during continuous membrane filtration than membrane filtration without oxidation. These results indicate that the oxidation by multiple injection coupled with membrane filtration was efficient and applicable to actual water treatment for manganese removal.

Overview of the Effect of Catalyst Formulation and Exhaust Gas Compositions on Soot Oxidation In DPF

  • Choi Byung Chul;FOSTER D.E.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This work reviews the effects of catalyst formulation and exhaust gas composition on soot oxidation in CDPF (Catalytic Diesel Particulate Filter). DOC's (Diesel Oxidation Catalysts) have been loaded with Pt catalyst (Pt/$Al_{2}O_3$) for reduction of HC and CO. Recent CDPF's are coated with the Pt catalyst as well as additives like Mo, V, Ce, Co, Fe, La, Au, or Zr for the promotion of soot oxidation. Alkali (K, Na, Cs, Li) doping of metal catalyst tends to increase the activity of the catalysts in soot combustion. Effects of coexistence components are very important in the catalytic reaction of the soot. The soot oxidation rate of a few catalysts are improved by water vapor and NOx in the ambient. There are only a few reports available on the mechanism of the PM (particulate matter) oxidation on the catalysts. The mechanism of PM oxidation in the catalytic systems that meet new emission regulations of diesel engines has yet to be investigated. Future research will focus on catalysts that can not only oxidize PM at low temperature, but also reduce NOx, continuously self-cleaning diesel particulate filters, and selective catalysts for NOx reduction.

Effect of Surface Treatments of Stainless Steels on Oxidation Behavior Under Operating Condition of IT SOFC Interconnect (IT SOFC 인터커넥터 구동 조건에서의 스테인레스 소재의 산화거동에 미치는 표면전처리의 영향)

  • Moon, Min-Seok;Woo, Kee-Do;Kim, Sang-Hyuk;Yoo, Myung-Han
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.25-31
    • /
    • 2011
  • Solid oxide fuel cells (SOFCs) have many attractive features for widespread applications in generation systems. Recently, stainless steels have attractive materials for metallic bipolar plate because metallic bipolar plates have many benefits compared to others such as graphite and composite bipolar plates. SOFC operates on high temperature of about $800{\sim}1000^{\circ}C$ than other fuel cell systems. Thus, many studies have attempted to reduced the operation temperature of SOFC to about $600{\sim}800^{\circ}C$, which is the intermediate temperature (IT) of SOFC. Low cost and high-temperature corrosion resistance are very important for the practical applications of SOFC in various industries. In this study, two specimens, 304 and 430 stainless steels with and without different pre-surface treatments on the surface were investigated. And, specimens were exposed at high temperature in the box furnace under oxidation atmosphere of $800^{\circ}C$. Oxidation behavior have been investigated with the materials exposed at different times (100 hrs and 400 hrs) by SEM, EDS and XRD. By increasing exposure time, the amount of metal oxide increased in the order like; STS304 < STS430 and As-received < As-polished < Sand-blast specimens.

Aluminizing of Incoroy 909 Alloy by Pack Cementation Method (팩 세멘테이션법에 의한 Incoloy 909 합금의 알루미나이징)

  • Ahn, Jin-Sung;Kwon, Soon-Woo;Yoon, Jae-Hong;Park, Bong-Gyu
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.4
    • /
    • pp.173-178
    • /
    • 2006
  • Incoloy alloy 909 is an Fe-Ni-Co based superalloy that is attractive for gas turbine engine applications. The absence of chromium, however, makes the alloy more susceptible to oxidation in high temperature. To improve the oxidation resistance aluminizing was performed by high activity low temperature pack cementation process. Aluminizing condition was examined with different times and temperatures. Optimum aluminizing conditions were at the temperature of $552^{\circ}C$ for 20 hrs. In the optimized condition, the thickness of the aluminized layer was about $20{\mu}m$. Also, the aluminized layer made the alloy to increase the resistance to the corrosion.

A Study on a Combined DeNOx Process of Plasma Oxidation and $NH_3$ SCR for Diesel Engine (플라즈마 산화와 암모니아 SCR 복합탈질공정의 엔진적용 연구)

  • Song, Young-Hoon;Lee, Jae-Ok;Cha, Min-Suk;Kim, Seock-Joon;Ryu, Jeong-In
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.4
    • /
    • pp.39-46
    • /
    • 2007
  • The technique of $NH_3$ SCR (selective catalytic reduction) assisted by plasma oxidation has been applied to a 2,000 cc diesel engine. The present combined $deNO_x$ process consists of two steps. The first step is that about 50% of emitted NO from the engine is oxidized to $NO_2$ in a plasma oxidation process. The second step is that NO and $NO_2$ are simultaneously reduced to $N_2$ in the $NH_3$ SCR process. The engine test results showed that the $deNO_x$ rates of the present combined process are higher than those of conventional SCR process by 20%. Such a high performance of the combined process is noticeable especially, when the exhaust temperature are relatively low, i.e., $170-220^{\circ}C$. To provide a feasibility of the present technique the effects of operating conditions, such as an electrical input energy, an exhaust gas temperature, an initial NO concentration, and the amount of hydrocarbon addition, were discussed.

  • PDF

A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process (LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구)

  • 강현욱;권현옥;송요승
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.2
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

Honeycomb-structured Fe2O3 Catalysts for Low-temperature CO Oxidation (산화철 허니컴 구조 촉매를 활용한 일산화탄소 저온 산화반응 연구)

  • Lee, Donghun;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.151-154
    • /
    • 2019
  • We report the effective fabrication processes for more practical monolith catalysts consisting of washcoated alumina on a cordierite honeycomb monolith (CHM) and iron oxides nanoparticles in the alumina prepared by a simple dry coating method. It is confirmed that iron oxide nanoparticles were well deposited into the mesopore of washcoated alumina which is formed on the corner wall of honeycomb channel, and the effect of annealing temperature was evaluated for carbon monoxide oxidation catalysts. $Fe_2O_3/{\gamma}-Al_2O_3/CHM$ catalysts annealed at $350^{\circ}C$ exhibited the most enhanced catalytic activity, 100% conversion efficiency at more than $200^{\circ}C$ operating temperature.