• Title/Summary/Keyword: Low temperature chamber

Search Result 401, Processing Time 0.023 seconds

Variations of Air Temperature, Relative Humidity and Pressure in a Low Pressure Chamber for Plant Growth (식물생장용 저압챔버 내의 기온, 상대습도 및 압력의 변화)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.200-207
    • /
    • 2009
  • This study was conducted to analyze the variations of air temperature, relative humidity and pressure in a low pressure chamber for plant growth. The low pressure chamber was composed of an acrylic cylinder, a stainless plate, a mass flow controller, an elastomer pressure controller, a read-out-box, a vacuum pump, and sensors of air temperature, relative humidity, and pressure. The pressure leakage in the low pressure chamber was greatly affected by the material and connection method of tubes. The leakage rate in the low pressure chamber with the welding of the stainless tubes and a plate decreased by $0.21kPa{\cdot}h^{-1}$, whereas the leakage in the low pressure chamber with teflon tube and rubber O-ring was given by $1.03kPa{\cdot}h^{-1}$. Pressure in the low pressure chamber was sensitively fluctuated by the air temperature inside the chamber. An elastomer pressure controller was installed to keep the pressure in the low pressure chamber at a setting value. However, inside relative humidity at dark period increased to saturation level.. Two levels (25 and 50kPa) of pressure and two levels (500 and 1,000sccm) of mass flow rate were provided to investigate the effect of low pressure and mass flow rate on relative humidity inside the chamber. It was concluded that low setting value of pressure and high mass flow rate of mixed gas were the effective methods to control the pressure and to suppress the excessive rise of relative humidity inside the chamber.

Low Temperature Plastic Hardening Constitutive Equation for Steels of Polar Class Vessels (빙해선박 강재의 저온 소성경화 구성방정식)

  • Min, Dug-Ki;Heo, Young-Mi;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.227-231
    • /
    • 2012
  • In this study, a plastic hardening constitutive equation for steels of polar class vessels at low temperature is proposed. The equation was derived using the experimental data obtained from tensile tests at room and low temperatures. Tensile tests at low temperature are both costly and time consuming because an expensive cold chamber is necessary and it takes too much time to cool down a specimen to set temperature. Using the proposed plastic hardening constitutive equation the plastic hardening characteristics of steels for polar class vessels at low temperature can be easily predicted from the tensile test results at room temperature.

Effect of Transfer Date to a Growth Chamber and Low Temperature on Growth and Flowering of Jeffersonia dubia Benth. (입실시기와 저온처리가 깽깽이풀의 생장과 개화에 미치는 영향)

  • Jeong, Jeong Hag
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.4
    • /
    • pp.266-270
    • /
    • 2009
  • This experiment was conducted to investigate the effect of transfer date to a growth chamber and low temperature on growth and flowering of Jeffersonia dubia for free control of flowering period. According to transfer date, any plant did not sprout when plants were put in a growth chamber from Aug. 20 to Dec. 20. However, all the plants which were put in a growth chamber on Jan. 20 or Feb. 20 sprouted and resulted in flowering. The effect of beginning time and period of low temperature treatment were also observed. At the beginning time of Aug. 20, sprouting and flowering occurred as plant received more than 60 days of low temperature treatment. However, almost of al l the plants sprouted and flowered by only 30 days of low temperature treatment when the low temperature was given after Sep. 20. 60 days of low temperature given again after about three month growing period after dormancy breaking, resulted in resprouting of all plants and 70% of them flowered in this experiment.

Low-Temperature Deformation Behavior of a Stainless Steel for the Thrust Chamber Mixing Head (연소기 헤드용 스테인리스강의 저온 변형 거동)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1096-1103
    • /
    • 2009
  • The predictions of the material behavior for the structural stability of thrust chamber mixing head at very-low temperatures are very important since the head is highly pressurized by the liquid oxygen with very-low temperatures and experiences impact load by the thrust of combustion chamber. The constitutive equation to express tensile deformation behavior of the material at very-low temperature to predict deformation behavior of the mixing head is formulated by composition of thermal component and athermal component based on dislocation energy barrier model suggested by Kocks. Also, increase of thermal stress components by the increase of obstacles at low temperatures is formulated to the equation similar with Ramberg-Osgood equation. The suggested model predicted well the material's behavior at the wide temperature ranges from very-low temperature to ambient temperature.

Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion (연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

A Experimental Study of Insulation Performance of Insulated Forms Utilizing NT frame Insulation at Low Temperature (저온환경하 NT(Nano Technology)구조 단열재를 사용한 단열거푸집의 열적성능평가에 관한 실험적 연구)

  • Park, Jang-Hyun;Kim, Mok-Kyu;Kim, Hyeong-Cheol;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.179-180
    • /
    • 2015
  • In this study, the experimental study on Insulation performance of insulated forms utilizing NT frame heat insulation at low Temperature. For this study, placing insulated TEGO film plywood based form between two constant temperature and humidity chamber that maintaining 10℃, decrease temperature of one chamber to -10℃ and -20℃. Each of steps, maintaining period of temperature was 1 hour. After placing the insulated form, measure temperature of outside if insulated form. As a result of experiment, temperature difference of Fumed Silica Vacuum insulation was lowest.

  • PDF

A Experimental Study on Thermal Performance of Insulated Forms with Different Insulating Methods at Low Temperature (저온환경하에서 단열처리 방법에 따른 단열거푸집의 열적성능에 관한 실험적 연구)

  • Kim, Mok-Kyu;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Kim, Jae-Young;Mun, Young-Bum;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.57-58
    • /
    • 2015
  • In this study, the experimental study on Thermal Performance of Insulated Forms with Different Insulating Methods at Low Temperature. For this study, placing insulated plywood based form between two constant temperature chamber that maintaining 10℃, decrease temperature of one chamber to -10℃ and -20℃. Each of steps, maintaining period of temperature was 1 hour. After placing the form, measure temperature of opposite side of the insulated form. As a result of experiment, temperature difference of rigid urethane was lowest.

  • PDF

Carrier Design by Temperature Distribution Analysis in Chamber of ITO Deposition Inline Sputter (ITO 증착용 인라인 챔버 온도 분포해석에 의한 캐리어장치의 설계)

  • Lee, Sang-Jae;Choi, Ju-Ran;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.92-97
    • /
    • 2015
  • The design of the glass-carrier was studied using simulations of the temperature distribution of an ITO deposition inline-sputter process. The temperature distribution was simulated in Heating Chamber 7, and in the ITO Deposition Chambers 8 and 9. The temperature distribution of the glass sheets was low in both the lower and upper lines. Moreover, it was observed that the temperature in Chamber 8 significantly affected the temperature in Chamber 9, and that the latter was hotter. The rear of the chambers were subjected to more heating than the fronts, so the temperature range at the back was wider. Redesigning the shape of the carrier made it possible to load more glass sheets on the glass carrier, and to make deposits on the ITO glass at higher temperature, over a wider area.

An Isothermal Temperature Source with a Large Surface Area using the Metal-Etched Microwick-Inserted Vapor Chamber Heat Spreader

  • Go, Jeong-Sang;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.681-688
    • /
    • 2004
  • For use of the thermal cycle of the biochemical fluid sample, the isothermal temperature source with a large surface area was designed, fabricated and its thermal characterization was experimentally evaluated. The comprehensive overview of the technology trend on the temperature control devices was detailed. The large surface area isothermal temperature source was realized by using the vapor chamber heat spreader. The cost-effectiveness and simple manufacturing process were achieved by using the metal-etched wick structure. The temperature distribution was quantitatively investigated by using IR temperature imaging system at equivalent temperatures to the PCR thermal cycle. The standard deviation was measured to be within 0.7$^{\circ}C$ for each temperature cycle. This concludes that the presented isothermal temperature source enables no temperature gradient inside bio-sample fluid. Furthermore it can be applied to the cooling of the electronic devices due to its slimness and low thermal spreading resistance.

A Turbulent Bounbary Layer Effect of the De-Laval Nozzle on the Combustion Chamber Pressure (De-Laval 노즐의 난류 경계층 유동이 연소실 압력에 미치는 영향)

  • 장태호;이방업;배주찬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.635-644
    • /
    • 1986
  • A Compuressible turbulent boundary layer effect of the high temperature, accelerating gas flow through the De-Laval nozzle on combustion chamber pressure is numerically investigated. For this purpose, the coupled momentum integral equation and energy integral equation are solved by the Bartz method, and 1/7 power law for both the turbulent boundary layer velocity distribution and temperature distribution is assumed. As far as the boundary layer thicknesses are concerned, we can obtain reasonable solutions even if relatively simple approximations to the skin friction coefficient and stanton number have been used. The effects of nozzle wall cooling and/or mass flow rate on the boundary layer thicknesses and the combustion chamber pressure are studied. Specifically, negative displacement thickness is appeared as the ratio of the nozzle wall temperature to the stagnation temperature of the free stream decreases, and, consequently, it makes the combustion chamber pressure low.