• 제목/요약/키워드: Low temperature bonded type

검색결과 14건 처리시간 0.022초

저융점 복합사를 이용한 난연 폴리에스터 직물의 염색 (Dyeing of Flame Retardant Polyester Fabric developed by using Low-melting-point Bicomponent Filament)

  • 이신희
    • 한국의류산업학회지
    • /
    • 제15권3호
    • /
    • pp.467-476
    • /
    • 2013
  • This study investigates the dyeability and the fastness of flame retardant polyester fabric developed by a thermal bonding with a low melting component of flame retardant bicomponent filament (LMFRPC). The fabrics were prepared with flame retardant polyester filaments (FRP) as warp and blended filaments of FRP and LMFRPC as weft. The LMFRPC have a sheath and a core where the core comprises a flame retardant polyester and the sheath comprises a thermoplastic polyester with a low-melting point. The thermal bonding of fabric was conducted in a pin tenter at $170^{\circ}C$ for 60 seconds. Fabric dyeing was conducted with an infrared dyeing machine at various dyeing temperatures and dyeing times. The dyestuffs used in this study were CI disperse Yellow 54, Red 60 and Blue 56 of E-type dyestuff and Orange 30, Red 167 and Blue 79 of S-type dyestuff. This study investigated the morphology of thermal bonded fabric, dyeability and fastness of dyed fabric. Dyeability increased with an increased dyeing temperature. The thermal bonded area increased with the increased LMFRPC content. The dyeability of S-type dyestuff was higher than E-type dyestuff; in addition, the saturated dyeing time was about 20minutes at $130^{\circ}C$ for E and S-type dyestuff. The fastness to washing and rubbing were excellent at a 4-5 Grade.

Solenoid Type 3-D Passives(Inductors and Trans-formers) For Advanced Mobile Telecommunication Systems

  • Park, Jae Y.;Jong U. Bu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권4호
    • /
    • pp.295-301
    • /
    • 2002
  • In this paper, solenoid-type 3-D passives (inductors and transformers) have been designed, fabricated, and characterized by using electroplating techniques, wire bonding techniques, multi-layer thick photoresist, and low temperature processes which are compatible with semiconductor circuitry fabrication. Two different fabrication approaches are performed to develop the solenoid-type 3-D passives and relationship of performance characteristics and geometry is also deeply investigated such as windings, cross-sectional area of core, spacing between windings, and turn ratio. Fully integrated inductor has a quality factor of 31 at 6 GHz, an inductance of 2.7 nH, and a self resonant frequency of 15.8 GHz. Bonded wire inductor has a quality factor of 120, an inductance of 20 nH, and a self resonant frequency of 8 GHz. Integrated transformers with turn ratios of 1:1 and n:l have the minimum insertion loss of about 0.6 dB and the wide bandwidth of a few GHz.

졸-겔 공정에 의한 유기변성 하이브리드 세라믹 물질의 미세 마찰마모 특성 (An Experimental Study on the Micro Friction and Wear Characteristics of Organically Modified Hybrid Ceramic Materials by A Sol-Gel Process)

  • 한흥구;공호성;윤의성;양승호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.215-225
    • /
    • 2002
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several combinations of metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), $titaniumisopropoxide(Ti(Opr^{j})_{4})$, $zirconiumisopropoxide(Zr(Opr^{j})_{4})$ and $aluminumbutoxide(Al(Obu^{t})_{4})$ were chemically modified by epoxy-, acrylic- and fluoro-silane compounds, respectively, in this work. Friction and wear characteristics of these hybrid ceramic materials were tested with a micro tribe-tester where a reciprocating steel ball slid on a test material, and the tribological property was also evaluated with respect to both heat-curing temperature and tile time. Test results generally showed that hybrid ceramic materials modified by epoxy-silane compounds had a low friction compared to others. And the higher heat-curing temperature and the longer heat treatment time resulted in the higher friction and the lower wear. IR spectroscopic analyses revealed that it was caused mainly by the increased metal oxide content in hybrid ceramics when the heat-curing temperature was over $320^{\circ}C$.

  • PDF

졸-겔 공정에 의한 유기변성 하이브리드 세라믹 물질의 미세 마찰마모 특성 (Micro Friction and Wear Characteristics of Organically Modified Hybrid Ceramic Materials Synthesized by A Sol-Gel Process)

  • 한흥구;공호성;윤의성;양승호
    • Tribology and Lubricants
    • /
    • 제18권5호
    • /
    • pp.324-332
    • /
    • 2002
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), titaniumisopropoxide$(Ti(Opr^i)_4),$ zirconiumisopropoxide $(Zr(Opr^i)_4)$ and aluminumbutoxide$(Al(Obu^t)_4)$ were chemically modified by epoxy-, acrylic- and fluoro-silane compounds, respectively. Friction and wear characteristics of these hybrid ceramic materials were tested with a micro tribo-tester, and evaluated with respect to both heat-curing temperature and the time. Test results generally showed that hybrid ceramic materials modified by epoxy-silane compounds had a low friction compared to others. And the higher het-curing temperature and the longer heat treatment time resulted in the higher friction and the lower wear. IR spectroscopic analyses revealed that these results were caused mainly by the increased metal oxide content in hybrid ceramics when the heat-curing temperature was over $320^{\circ}C.$

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

저융점 복합사를 이용한 열융착 직물의 제조(I) - 헤드타이를 중심으로 - (Preparation of Thermal Bonding Fabric by using-low-melting-point Bicomponent Filament Yarn - Head tie -)

  • 지명교;이신희
    • 한국의류산업학회지
    • /
    • 제11권3호
    • /
    • pp.474-480
    • /
    • 2009
  • The purpose of this study is to prepare the hardness of polyester(PET) fabric by thermal bonding with low melting component of bicomponent fiber and to describe the change of physical properties of thermal bonded PET fabrics. The PET fabrics were prepared with regular PET fiber as warp and bicomponent fiber as weft. The bicomponent fiber of sheath-core type were composed with a regular PET core and low melting PET sheath. The thermal bonding of PET fabric was carried out in pin tenter from 120 to $195^{\circ}C$ temperature range for 60 seconds. In this study, we investigated the physical properties and melting behavior of PET fiber and the effect of the temperature of the pin tenter on the thermal bonding, mechanical properties. Melting peak of warp showed the thermal behavior of general PET fiber. However, melting peak of weft fiber(bicomponent fiber) showed the double melting peak. The thermal bonding of the PET fabric formed at about temperature of lower melting peak. The optimum thermal bonding conditions for PET fabrics was applied at $190{\sim}195^{\circ}C$ for 60seconds by pin tenter. On the other hand, the tensile strength of the PET fabric decreased with an increasing temperature of thermal bonding.

입력기체비를 이용한 미세구조 변화로부터 화학증착 탄화규소의 복층구조 제작 (Fabrication of CVD SiC Double Layer Structure from the Microstructural Change Through Input Gas Ratio)

  • 오정환;왕채현;최두진;송휴섭
    • 한국세라믹학회지
    • /
    • 제36권9호
    • /
    • pp.937-945
    • /
    • 1999
  • 반응결합 탄화규소(RBSC) 반응관을 보호하기 위하여, 반응결합 탄화규소 기판 위에 탄화규소를 1~10 범위의 입력기체비(${\alpha}=P_{H2}/P_{MTS}=Q_{H2}/Q_{MTS}$)와 1050~1300$^{\circ}C$범위의 증착온도에서 methyltrichlorosilane(MTS)로부터 수소분위기에서 저압화학기상법으로 증착하였다. 1250$^{\circ}C$의 증착온도에서 입력기체비가 감소함에 따라 증착속도는 증가하다가 감소하였다 입력기체비가 높을 때에는 (111) 우선배향성을 나타내고 과립형의 미세구조를 보이며, 입력기체비가 작을 경우에는 (220) 우선배향성을 가지는 마면주상의 미세구조가 관찰되었다. 증착온도가 증가함에 따라 입력기체비와 비슷하게 미세구조의 변화하는결과를 얻었으며, 이러한 결과는 증착기구의 변화와 밀접한 관련이 있다. 일정한 증착온도에서 입력기체비의 조정를 통하여 얻었으며, 이러한 결과는 증착기구의 변화와 밀접한 관련이 있다. 일정한 증착온도에서 입력기체비의 조절을 통하여 과립형과 미면주상의 미세구조를 함께 가지는 복층구조를 연속공정을 통하여 성공적으로 제조하였다.

  • PDF

Development of Ceramic Arc-tube by the PIM Process

  • Rhee, Byung-Ohk;Choi, Seung-Chul;Park, Jeong-Shik;Kim, Byoung-Kyu;Kim, Hyung-Soo;Kim, Sang-Woo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.205-206
    • /
    • 2006
  • A ball-shape alumina arc-tube for low-wattage lamp was developed by the PIM process. An ultra high purity translucentgrade alumina powder was used. In injection molding process, a hot-runner type mold was developed. The translucent-grade alumina powder was extremely sensitive to contamination so that the injection molding condition and atmosphere control in the furnace should be taken care of with extreme caution. Contamination sources were pinpointed with EPMA. The arc-tube was molded in half and two halves were bonded in the middle by a new bonding technique at room temperature developed in this study.

  • PDF

저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합 (Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density)

  • 이채린;이진현;박기문;유봉영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

AgAl 전극 고온 소성 조건 가변에 따른 N-형 결정질 실리콘 태양전지의 접촉 특성 분석 (Analysis of Contact Properties by Varying the Firing Condition of AgAl Electrode for n-type Crystalline Silicon Solar Cell)

  • 오동현;정성윤;전민한;강지윤;심경배;박철민;김현후;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.461-465
    • /
    • 2016
  • n-type silicon shows the better tolerance towards metal impurities with a higher minority carrier lifetime compared to p-type silicon substrate. Due to better lifetime stability as compared to p-type during illumination made the photovoltaic community to switch toward n-type wafers for high efficiency silicon solar cells. We fabricated the front electrode of the n-type solar cell with AgAl paste. The electrodes characteristics of the AgAl paste depend on the contact junction depth that is closely related to the firing temperature. Metal contact depth with p+ emitter, with optimized depth is important as it influence the resistance. In this study, we optimize the firing condition for the effective formation of the metal depth by varying the firing condition. The firing was carried out at temperatures below $670^{\circ}C$ with low contact depth and high contact resistance. It was noted that the contact resistance was reduced with the increase of firing temperature. The contact resistance of $5.99m{\Omega}cm^2$ was shown for the optimum firing temperature of $865^{\circ}C$. Over $900^{\circ}C$, contact junction is bonded to the Si through the emitter, resulting the contact resistance to shunt. we obtained photovoltaic parameter such as fill factor of 76.68%, short-circuit current of $40.2mA/cm^2$, open-circuit voltage of 620 mV and convert efficiency of 19.11%.