Browse > Article
http://dx.doi.org/10.4313/JKEM.2016.29.8.461

Analysis of Contact Properties by Varying the Firing Condition of AgAl Electrode for n-type Crystalline Silicon Solar Cell  

Oh, Dong-Hyun (Department of Energy System, Sungkyunkwan University)
Chung, Sung-Youn (School of Information and Communication Engineering, Sungkyunkwan University)
Jeon, Min-Han (School of Information and Communication Engineering, Sungkyunkwan University)
Kang, Ji-Woon (School of Information and Communication Engineering, Sungkyunkwan University)
Shim, Gyeong-Bae (School of Information and Communication Engineering, Sungkyunkwan University)
Park, Cheol-Min (Department of Energy Science, Sungkyunkwan University)
Kim, Hyun-Hoo (Department of Display Engineering, Doowon Technical University)
Yi, Jun-Sin (School of Information and Communication Engineering, Sungkyunkwan University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.29, no.8, 2016 , pp. 461-465 More about this Journal
Abstract
n-type silicon shows the better tolerance towards metal impurities with a higher minority carrier lifetime compared to p-type silicon substrate. Due to better lifetime stability as compared to p-type during illumination made the photovoltaic community to switch toward n-type wafers for high efficiency silicon solar cells. We fabricated the front electrode of the n-type solar cell with AgAl paste. The electrodes characteristics of the AgAl paste depend on the contact junction depth that is closely related to the firing temperature. Metal contact depth with p+ emitter, with optimized depth is important as it influence the resistance. In this study, we optimize the firing condition for the effective formation of the metal depth by varying the firing condition. The firing was carried out at temperatures below $670^{\circ}C$ with low contact depth and high contact resistance. It was noted that the contact resistance was reduced with the increase of firing temperature. The contact resistance of $5.99m{\Omega}cm^2$ was shown for the optimum firing temperature of $865^{\circ}C$. Over $900^{\circ}C$, contact junction is bonded to the Si through the emitter, resulting the contact resistance to shunt. we obtained photovoltaic parameter such as fill factor of 76.68%, short-circuit current of $40.2mA/cm^2$, open-circuit voltage of 620 mV and convert efficiency of 19.11%.
Keywords
Screen printing; N-type solar cells; Metallization; Contact resistivity(${\rho}_c$); AgAl electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Seyemohammad, E. Graddy, and A. Shaikh, Photovoltaic Specialists Conference, 3600-3603 (2010).
2 S. Fritz, M. Konlg, S. Riegel, A. Heguth, M. Hoerteis, and G. Hahn, IEEE Jorunal of Photovoltaics, 5, 145-151 (2015). [DOI: http://dx.doirg/10.1109/JPHOTOV.2014.2364117]   DOI
3 S. Fritz, M. Konlg, S. Riegel, A. Heguth, M. Hoerteis, and G. Hahn, 5th Metallization Workshop, 67, 43-48 (2015).
4 E. Lohmuller, S. Werner, R. Hoenlg, J. Greullch, and F. Clement, Sol. Energ. Mat. Sol. C., 142, 2-11 (2015). [DOI: http://dx.doirg/10.1016/j.solmat.2015.04.039]   DOI
5 D. L. Batzer, K. Hanton, A. Li, and A. Cuevas, 21st European Photovoltaic Solar Energy Conference, 807-810 (2006).
6 P. K. Basu, A. Khanna, and Z. Hameiri, Renewable Energy, 78, 590-598 (2015). [DOI: http://dx.doirg/10.1016/j.renene.2015.01.058]   DOI
7 A. Khanna, P. K. Basu, A. Filipovic, V. Shanmugan, C. Schmiga, A. G. Aberle, and T. Mueller, Sol. Energ. Mat. Sol. C., 132, 589-596 (2015).   DOI
8 M. M. Hilali, IEEE Trans. Elec. Dev., 51, 948-955 (2004). [DOI: http://dx.doirg/10.1109/TED.2004.828280]   DOI
9 M. A. Green, A. W. Blakers, J. Shi, E. M. Keller, and S. R. Wenham, IEEE Trans. Elec. Dev., ED-31, 679-683 (1984). [DOI: http://dx.doirg/10.1109/T-ED.1984.21589]
10 T. Kwon, S. Kim, D. Kyung, W. Jung, S. Kim, Y, Lee, Y. Kim, K. Jang, S. Jung, M. Shin, and J. Yi, Sol. Energ. Mat. Sol. C., 94, 823-829 (2010). [DOI: http://dx.doirg/10.1016/j.solmat.2009.12.032]   DOI
11 J. Hoornstra, A. van der Heide, J. Bultman, and A. Weeber, Proc. of the Conference PV, 276-279 (2002).
12 D. L. Batzner, K. Hanton, A. Li, and A. Cuevas, 21st European Photovoltaic Solar Energy Conference, 807-810 (2006).
13 S. Riegel, F. Mutter, T. Lauermann, B. Terheiden, and G. Hahn, Energy Procedia, 21, 14-23 (2012). [DOI: http://dx.doirg/10.1016/j.egypro.2012.05.003]   DOI
14 F. Recart, I. Freire, L. Perez, R. Lago-Aurrekoetxea, J.C. Jimeno, and G. Bueno, Sol. Energ. Mat. Sol. C., 91, 897-902 (2007). [DOI: http://dx.doirg/10.1016/j.solmat.2007.02.005]   DOI