• 제목/요약/키워드: Low temperature absorption

검색결과 484건 처리시간 0.022초

저농도 페놀수지 주입처리에 의한 평죽판 개발(1) (Development of Compressed-flattened Bamboo Impregnated with Low Molecular Weight PF Resin(1))

  • 이화형;김관의
    • 한국가구학회지
    • /
    • 제12권2호
    • /
    • pp.29-38
    • /
    • 2001
  • This study was carried out to develope a new process of flattening bamboo pieces(3 months old) by two steps of utilizing microwave oven and hot press. Internode bamboo pieces were impregnated with low molecular weight phenol formaldehyde resin (PF) under vacuum of 76 cmHg, heated in a household microwave oven in 1 minute, pressed on the temperature of $145^{\circ}C$ by the hot press for 10 minute, and then cooled by the cold press in their flattened form. The physical and mechanical . Properties of compressed flattened bamboo were as follows: 1) PF1(Mw:427) and PF2(Mw:246) sol. met the success of flattening of internode bamboo pieces in both of P. bambusoides and P. nigra var. PF2 showed the more plasticity to flatten the bamboo than PFI. The PF2 sol. with low molecular weight(Mw:246) gave the more weight gain than that of PF1 in the equal concentration. PF1 of 5% (NVC) and PF2 of 10% (NVC) sol. gave the best result for physical and mechanical properties and from a economical view point. 2) The PFI of 5% (NVC) sol. with low molecular weight decreased the water absorption of 62-63% and increased the bending strength (MaR) of 80-90%, compression strength of 43-54%. 3) The PF2 of 10% (NVC) sol. with low molecular weight decreased the water absorption of 56-57% and increased the bending strength (MaR) of 64-86%, compression strength of 39-63%.

  • PDF

탄산가스 주입이 압출팽화 옥수수전분의 성질에 미치는 영향 (Effect of $CO_2$Gas injection on Properties of Extruded Corn Starch)

  • 류기형;강선희;이은용;임승택
    • 한국식품영양과학회지
    • /
    • 제26권3호
    • /
    • pp.436-442
    • /
    • 1997
  • Corn starch was extruded under relatively low shear, high moisture, and low temperature. Puffing of corn starch dough was induced by injecting $CO_2$gas in the range from 0MPa to 0.09MPa. Piece density and compressive modulus for puffed corn starch were decreased by increasing the injection pressure to 0.07MPa, and increased above 0.07MPa. the microstructure of corn starch puffed with $CO_2$gas showed thick cell size, compared with those puffed with steam. RVA paste viscosity curves of corn starch puffed with $CO_2$had different patterns from those puffed with steam, probably resulted from partial gelatinization of starch. Water absorption and solubility were not significantly changed by $CO_2$injection pressure, but the average degree of polymerization was reduced by higher $CO_2$injection. The water absorption, water solubility, and the average degree of polymerization for corn starch puffed with $CO_2$were significantly lower than those puffed with steam.

  • PDF

Synthesis and Characterization of Fluorinated Poly(phenylmaleimide-co-pentafluorophenylmaleimide) for Optical Waveguides

  • Choi, Jongwan;Oh, Jin-Woo;Kim, Nakjoong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1077-1080
    • /
    • 2013
  • Fluorinated polymaleimides with high thermal stability and low optical absorption loss in the optical communication wavelength of $1.55{\mu}m$ were investigated for application in low-loss waveguide materials. The fluorinated polymaleimides were prepared from two monomers phenylmaleimide (H-PMI) and pentafluorophenylmaleimide (F-PMI). All synthesized copolymers had high thermal stability (decomposition temperature $(T_d)=380-430^{\circ}C$). The refractive index of the copolymers could be tuned from 1.4969 to 1.5950 in the TE mode and from 1.4993 to 1.5932 for the TM mode at 632.8 nm by copolymerizing different weight ratios of H-PMI and F-PMI. The refractive index of the copolymers decreased with increasing F-PMI content. In addition, when the amount of F-PMI was increased, optical loss and absorption loss at 632.8 nm and 1550 nm, respectively, decreased.

태양열 온수 시스템에 적용 가능한 100 W급 열전발전 모듈 성능에 관한 연구 (A Study on the Performance of 100 W Thermoelectric Power Generation Module for Solar Hot Water System)

  • 서호영;이경원;윤정훈;이순환
    • 한국태양에너지학회 논문집
    • /
    • 제39권1호
    • /
    • pp.21-32
    • /
    • 2019
  • Solar hot water system produces hot water using solar energy. If it is not used effectively, overheating occurs during the summer. Therefore, a lot of research is being done to solve this. This study develops thermoelectric power module applicable to solar hot water system. A thermoelectric material can directly convert thermal energy into electrical energy without additional power generation devices. If there is a temperature difference between high and low temperature, it generate power by Seebeck effect. The thermoelectric module generates electricity using temperature differences through the heat exchange of hot and cold water. The water used for cooling is heated and stored as hot water as it passes through the module. It can prevent overheating of Solar hot water system while producing power. The thermoelectric module consists of one absorption and two radiation part. There path is designed in the form of a water jacket. As a result, a temperature of the absorption part was $134.2^{\circ}C$ and the radiation part was $48.6^{\circ}C$. The temperature difference between the absorption and radiation was $85.6^{\circ}C$. Also, The Thermoelectric module produced about 122 W of irradiation at $708W/m^2$. At this time, power generation efficiency was 2.62% and hot water conversion efficiency was 62.46%.

반응표면분석법에 따른 저온소성 경량골재의 킬른공정변수 최적화 (Optimization of Kiln Process Parameters of Low-Temperature Sintering Lightweight Aggregate by Response Surface Analysis)

  • 이한백;서치호
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.365-372
    • /
    • 2010
  • This paper was to evaluate the influence of kiln process parameter(kiln angle, kiln rotating speed) of lightweight aggregate using waste glass and bottom ash with industrial by-products on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis. In the results of surface plot and contour plot, it has verified that kiln residence time of lightweight aggregate increase as kiln angle and rotating speed decreases. For this reason, pore size and quantity tend to increase by active reaction of forming agent. It seems to be that increase in pore size and quantity have caused decreasing density, fracture load and thermal conductivity, and increasing water absorption. In conclusion, optimization of kiln process parameter on thermal conductivity, density, water absorption, fracture load and porosity by response surface analysis are kiln angle 2.4646%, kiln rotating speed 40.7089 rpm.

Ni 첨가량에 따른 중력 주조 Mg-Ni 합금의 수소화 반응 특성의 변화 (Change of Hydriding Properties of Gravity Cast Mg-Ni Alloys with Ni Content)

  • 임창동;문용민;유봉선;나영상;배종수
    • 한국수소및신에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.250-256
    • /
    • 2004
  • Magnesium and its alloys have the high potential as hydrogen storage materials because of their highest hydrogen storage capacity, low density and abundant resources. But poor kinetic properties of hydriding and dehydriding and high working temperature have limited their practical applications. In this study, the Mg-Ni binary alloys with different amount of Ni were produced by gravity casting and characterized in order to investigate the relationship between the microstructures and hydriding properties. The maximum hydrogen absorption capacity decreased, but the absorption kinetics increased with Ni content. The difference in the absorption kinetics was resulted from the differences in the sort and shape of primary solid phases and eutectic microstructure.

P/M법과 유도가열 공정변수가 6061 알루미늄 합금의 미세기공과 기계적 성질에 미치는 영향 (Effect of Process Parameters of P/M and Induction Heating on the Cell Morphology and Mechanical Properties of 6061 Aluminum Alloy)

  • 강충길;윤성원
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.222-229
    • /
    • 2003
  • The purpose of this study is to evaluate the mechanical properties of 6061 Al foams, which were fabricated by P/M and multi-step induction heating method, and to build the database, which is needed for computer aided modeling or foam components design. Aluminium foams, consisting of solid aluminium and large quantities of porosities, is widely used in automotive, aerospace, naval as well as functional applications because of its high stiffness at very low density, high impact energy absorption, heat and fire resistance, and greater thermal stability than any organic material. In this study, 6061 Al foams were fabricated for variation of fraction of porosities (%) according to porosities (%)-final heating temperature ( $T_{a3}$) curves. Mechanical properties such as compressive strength, energy absorption capacity, and efficiency were investigated to evaluate the feasibility of foams as crash energy absorbing components. Moreover, effect of the surface skin thickness on plateau stress and strain sensitivity of the 6061 Al foams with low porosities (%) were studied.d.

Ni-Mn 전착층의 기계적 성질에 미치는 공정조건의 영향 (Influences of Electrodeposition Variables on Mechanical Properties of Ni-Mn Electrodepositions)

  • 신지웅;양승기;황운석
    • Corrosion Science and Technology
    • /
    • 제13권3호
    • /
    • pp.102-106
    • /
    • 2014
  • Nickel electrodeposition from sulfamate bath has several benefits such as low internal stress, high current density and good ductility. In nickel deposited layers, sulfur induces high temperature embrittlement, as Ni-S compound has a low melting temperature. To overcome high temperature embrittlement problem, adding manganese is one of the good methods. Manganese makes Mn-S compound having a high melting temperature above $1500^{\circ}C$. In this work, the mechanical properties of Ni-Mn deposited layers were investigated by using various process variables such as concentration of Mn$(NH_2SO_3)_2$, current density, and bath temperature. As the Mn content of electrodeposited layers was increased, internal stress and hardness were increased. By increasing current density, internal stress increased, but hardness decreased. With increasing the bath temperature from 55 to $70^{\circ}C$, internal stress of Ni deposit layers decreased, but hardness didn't change by bath temperature. It was likely that eutectoid manganese led to lattice deformation, and the lattice deformation increased hardness and internal stress in Ni-Mn layers. Increasing current density and decreasing bath temperature would increase a mount of $H_2$ absorption, which was a cause for the rise of internal stress.

실리카겔을 이용한 흡착식 담수화 시스템 개발 (Development of Adsorption Desalination System Utilizing Silica-gel)

  • 현준호;;이윤준;천원기
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.364-369
    • /
    • 2012
  • The development of solar thermal energy used adsorption desalination technology have been examined as a viable option for supplying clean energy. In this study, the modelling of the main devices for solar thermal energy used and adsorption desalination system was introduced. Silica gel type adsorption desalination system is considered to be a promising low-temperature heat utilization system. The design is divided into three parts. First, the evaporator for the vaporization of the tap water is designed, and then the reactor for the adsorption and release of the steam is designed, followed by the condenser for the condensation of the fresh water is designed. In addition, new features based on the energy balance are also included to design absorption desalination system. In this basic research, One-bed(reactor) adsorption desalination plant that employ a low-temperature solar thermal energy was proposed and experimentally studied. The specific water yield is measured experimentally with respect to the time controlling parameters such as heat source temperatures, coolant temperatures, system switching and half-cycle operational times. Desalination is processes that permeate our daily lives, but It requires substantial energy input, powered either from electricity or from thermal input. From the environmental and sustainability perspecives, innovative thermodynamic cycles are needed to produce the above-mentioned useful effects at a lower specific energy input. This article describes the development of adsorption cycles for the production of desalting effects. We want that this adsorption system can be driven by low temperature heat sources at 60 to $80^{\circ}C$, such as renewable, solar thermal energy.

  • PDF

저온에서 형성된 니켈실리사이드의 적외선 흡수 특성 (IR Absorption Property in Nano-thick Nickel Silicides)

  • 한정조;송오성;최용윤
    • 한국재료학회지
    • /
    • 제19권4호
    • /
    • pp.179-185
    • /
    • 2009
  • We fabricated thermally evaporated 30 nm-Ni/(20 nm or 60 nm)a-Si:H/Si films to investigate the energy-saving property of silicides formed by rapid thermal annealing (RTA) at temperatures of $350^{\circ}C$, $450^{\circ}C$, $550^{\circ}C$, and $600^{\circ}C$ for 40 seconds. A transmission electron microscope (TEM) and a high resolution X-ray diffractometer (HRXRD) were used to determine the cross-sectional microstructure and phase changes. A UVVIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were employed for near-IR and middle-IR absorbance. Through TEM and HRXRD analysis, for the nickel silicide formed at low temperatures below $450^{\circ}C$, we confirmed columnar-shaped structures with thicknesses of $20{\sim}30\;nm$ that had ${\delta}-Ni^2Si$ phases. Regarding the nickel silicide formed at high temperatures above $550^{\circ}C$, we confirmed that the nickel silicide had more than 50 nm-thick columnar-shaped structures with a $Ni_{31}Si_{12}$ phase. Through UV-VIS-NIR analysis, nickel silicide showed almost the same absorbance in the near IR region as well as ITO. However, in the middle IR region, the nickel silicides with low temperature showed similar absorbance to those from high temperature silicidation.