• Title/Summary/Keyword: Low sinterability

Search Result 65, Processing Time 0.027 seconds

Low-temperature sintering and microwave dielectric properties of $ZnAl_2O_4$ with ZnO-$B_2O_3-SiO_2$ glass (ZnO-$B_2O_3-SiO_2$ 유리가 첨가된 $ZnAl_2O_4$의 저온 소결 및 마이크로파 유전 특성)

  • Kim, Kwan-Soo;Yoon, Sang-Ok;Kim, Shin;Kim, Yun-Han;Lee, Joo-Sik;Kim, Kyung-Mi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.265-265
    • /
    • 2007
  • In the present work, we have studied low temperature sintering and microwave dielectric properties of $ZnAl_2O_4$-zinc borosilicate (ZBS, 65ZnO-$25B_2O_3-10SiO_2$) glass composites. The focus of this paper was on the improvement of sinterability, low dielectric constant, and on the theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-ZBS glass composites, respectively. The $ZnAl_2O_4$ with 60 vo1% ZBS glass ensured successful sintering below $900^{\circ}C$. It is considered that the non-reactive liquid phase sintering (NPLS) occurred. In addition, $ZnAl_2O_4$ was observed in the $ZnAl_2O_4$-(x)ZBS composites, indicating that there were no reactions between $ZnAl_2O_4$ and ZBS glass. $ZnB_2O_4\;and\;Zn_2SiO_4$ with the willemite structure as the secondary phase was observed in the all $ZnAl_2O_4$-(x)ZBScomposites. In terms of dielectric properties, the application of the $ZnAl_2O_4$-(x)ZBS composites sintered at $900^{\circ}C$ to LTCC substrate were shown to be appropriate; $ZnAl_2O_4$-60ZBS (${\varepsilon}_r$= 6.7, $Q{\times}f$ value= 13,000 GHz, ${\tau}_f$= -30 ppm/$^{\circ}C$). Also, in this work was possible theoretical proof regarding of microwave dielectric properties in $ZnAl_2O_4$-(x)ZBS composites.

  • PDF

Effects of Co-doping on Densification of Gd-doped CeO2 Ceramics and Adhesion Characteristics on a Yttrium Stabilized Zirconia Substrate

  • Lee, Ho-Young;Kang, Bo-Kyung;Lee, Ho-Chang;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.6
    • /
    • pp.576-580
    • /
    • 2018
  • In this study, a small amount of CoO was added to commercial Gd-doped $CeO_2$ (GDC) powder. The CoO addition greatly enhanced sinterability at low temperatures, i.e., more than 98% of relative density was achieved at $1,000^{\circ}C$. When GDC/8YSZ (8 mol% yttrium stabilized zirconia) bilayers were sintered, Co-doped GDC showed excellent adhesion to the YSZ electrolyte. Transmission electron microscope (TEM) analysis showed that there were no traces of liquid films at the grain boundaries of GDC, whereas liquid films were observed in the Co-doped GDC sample. Because liquid films facilitate particle rearrangement and migration during sintering, mechanical stresses at the interface of a bilayer, which are developed based on different densification rates between the layers, might be reduced. In spite of $Co^{2+}$ doping in GDC, the electrical conductivity was not significantly changed, relative to GDC.

Effect of ZnO on Low Temperature Sintering of PMN-PNN-PZT Ceramics (ZnO가 PMN-PNN-PZT 세라믹스의 저온소결에 미치는 영향)

  • Lee, Sang-Ho;Yoo, Ju-Hyun;Hong, Jae-Il;Ryu, Sung-Lim
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.32-33
    • /
    • 2006
  • In this study, in order to develop multilayer ceramic actuator for ultrasonic nozzle and ultrasonic vibrator, PMN-PNN-PZT ceramics were fabricated using $Li_2CO_3$. $Na_2CO_3$ and ZnO as sintering aids. And then, their piezoelectric and dielectric properties according to the amount of ZnO addition were investigated. The addition of ZnO improved density, dielectric constant, electromechanical coupling factor, mechanical quality factor and piezoelectric d constant of PMN-PNN-PZT ceramics due to the increase of sinterability and accepter doping effect. Electromechanical coupling factor and mechanical quality factor of PMN-PNN-PZT ceramics increased with ZnO amount up to 0.4wt% and then decreased. At the sintering temperature of $900^{\circ}C$ and 0.4wt% ZnO addition, density, dielectric constant, electromechanical coupling factor, mechanical quality factor and piezoelectric d constant showed the optimum value of 7.876g/$cm^2$, 1299, 0.612, 1151 and 369pC/N, respectively.

  • PDF

Electrical Properties of Low Temperature Sintered $SrTiO_3$ Varistor

  • Seon, Ho-Won;Kim, Seong-Ho;Sahn Nahm;Kim, Yoonho
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.255-259
    • /
    • 1999
  • The effects of $SiO_2$ and MnO addition on the sinterability and the electrical properties of 0.4mol% Nb-doped SrTiO3 varistor were investigated. The $SiO_2$ content was fixed at 0.3mol% and the MnO content varied from 0 to 1.0mol%. With 0.3 mol% $SiO_2$ and 0.3 mol% MnO addition, optimum density was obtained by sintering at $1200^{\circ}C$ without excess liquid phase. Impedance spectroscopy was performed on the sintered specimens with 0.3 mol% $SiO_2$ and various MnO contents. It was found that the resistivities of grains was increased with increasing MnO content. The dielectric constant was measured to be above 50000 in the specimen with 0.3~1.0mol% Mn content. The non-linear coefficient increased substantially with MnO addition, and it varied from 1 to 9 depending on the MnO content.

  • PDF

Dielectric and Piezoelectric Characteristics of Low Temperature PMN-PZT Ceramics with the amount of PFW substitution (PFW치환에 따른 저온소결 PMN-PZT 세라믹스의 유전 및 압전 특성)

  • Lee, Kab-Soo;Yoo, Kyung-Jin;Lee, Hyun-Seok;Yoo, Ju-Hyun;Paik, Dong-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.181-182
    • /
    • 2005
  • In this study, in order to develop multilayer piezoelectric transformer, PMN-PZT ceramics were fabricated according to PFW substitution using $Li_2CO_3-CaCO_3$ as sintering aids and their dielectric and piezoelectric characteristics were investigated. As increasing the amount of PFW substitution, density was slightly increased due to the increased sinterability. At the 1[mol%] PFW substituted PMN-PZT ceramic sintered at 950[$^{\circ}C$], density, dielectric constant $\varepsilon_r$, electromechanical coupling factor kp, mechanical quality factor Qm and piezoelectric $d_{33}$ constant showed the optimum value of 7.761[$g/cm^3$], 1251, 0.479, 1425 and 282[pC/N], respectively.

  • PDF

Effect of Additives on the Densification and Electrical Properties of Ce0.8Gd0.2O2-δ Ceramics (Ceria의 소결과 전기전도도에 미치는 첨가제의 영향)

  • Yoo, Kyung-Bin;Oh, Eun-Ju;Choi, Gyeong-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.816-820
    • /
    • 2005
  • The doped-ceria is a strong candidate material for an intermediate temperature SOFC. However, the mechanical strength and the magnitude of electrical conductivity need to be increased at low sintering temperature. In this study, to improve both properties, $1at\% $ of Mg, Ca, Cr, Fe, Co, Ni, Cu, Ga, and Zr were added to the GDC20 ($20at\%$ Gd-doped Ceria) and sintered at $1350^{\circ}C$ that is $250^{\circ}C$ lower than $1600^{\circ}C$. With addition, the relative density of the sintered sample increased. Fe, Co, Ni, Cu, Ga doped-GDC20 showed high relative density over $92\%$. Among them, Ga doped-GDC20 showed the most improved sinterability. The conductivity of doped­GDC20 increased by $\~10$ times at $300\~700^{\circ}C$.

Fabrication of Molybdenum Silicide-based Composites with Uniformly Dispersed Silicon Carbide (탄화 규소가 균일 분산된 규화 몰리브데넘계 복합재의 제조)

  • Choi, Won June;Park, Chun Woong;Kim, Young Do;Byun, Jong Min
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.402-407
    • /
    • 2018
  • Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicide-based composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and ${\beta}-SiC$ as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed ${\beta}-SiC$ are fabricated using pressureless sintering. The relative density of the specimens sintered at $1500^{\circ}C$ for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.

Effects of Heat-treatment Condition on the Characteristics of Sintering and Electrical Behaviors of Two NASICON Compounds (열처리조건이 두 NASICON 조성의 소결 및 전기적특성에 미치는 영향)

  • 강희복;조남희;김윤호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.7
    • /
    • pp.685-692
    • /
    • 1997
  • Effects of sintering temperature and time on the phase formation, the characteristics of sintering and electrical behaviors of NASICON compounds with Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compositions synthesized by solid state reaction were investigated. Maximum relative densities of 96% and 91% were obtained for Na3Zr2Si2PO12 and Na3.2Zr1.3Si2.2P0.8O10.5 compounds, respectively. Complex impedance analysis in a frequency range below 4 MHz was performed to measure the ionic conductivity and migration barrier height of the compounds at RT-30$0^{\circ}C$. The maximum ionic conductivity and the minimum migration barrier height were 0.45 ohm-1cm-1 and 0.07 eV, respectively. The migration barrier height of the high temperature form (space group : R3c) is about 30-40% of that of the low temperature form (space group : C2/c) in two NASICON compounds. Ionic conductivity increases with increasing sinterability, and the presence of glass phase in Na3.2Zr1.3Si2.2P0.8O10.5 compounds lowers significantly ionic conductivity at temperatures above 14$0^{\circ}C$.

  • PDF

Microstructure and Sintering Behavior of W-15 wt%Cu Nanocomposite Powder Prepared from W-CuO Mixture (W-CuO 혼합물을 이용하여 제조된 W-Cu나노복합분말의 미세구조와 소결거동에 관한 연구)

  • 김길수;김대건;김영도
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.270-274
    • /
    • 2003
  • Recently, the fabrication process of W-Cu nanocomposite powders has been researched to improve the sinterability by mechanochemical process (MCP), which consists of ball milling and hydrogen-reduction with W- and Cu-oxide mixture. However, there are many control variables in this process because the W oxides are hydrogen-reduced via several reduction stages at high temperature over 80$0^{\circ}C$ with susceptive reduction conditions. In this experiment, the W-15 wt%Cu nanocomposite powder was fabricated with the ball-milling and hydrogen-reduction process using W and CuO powder. The microstructure of the fabricated W-Cu nanocomposite powder was homogeneously composed of the fine W particles embedded in the Cu matrix. In the sintering process, the solid state sintering was certainly observed around 85$0^{\circ}C$ at the heating rate of 1$0^{\circ}C$/min. It is considered that the solid state sintering at low temperature range should occur as a result of the sintering of Cu phase between aggregates. The specimen was fully densified over 98% for theoretical density at 120$0^{\circ}C$ for 1 h with the heating rate of 1$0^{\circ}C$/min.

Low sintering and dielectric properties of $BiNbO_4$ microwave dielectrics ($BiNbO_4$ 마이크로파 유전체의 저온 소결 및 유전 특성)

  • Yoon, Sang-Ok;Kwon, Hyeok-Jung;Kim, Kwan-Soo;Lee, Hyun-Sik;Shim, Sang-Heung;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.313-314
    • /
    • 2006
  • $BiNbO_4$ ceramics were sintered under the presence of zinc-borosilicate(ZBS) glass and resultant microwave dielectric properties were investigated with a view to applying the composition to LTCC technology. The addition of 5~20 wt% ZBS glass ensured successful sintering below $900^{\circ}C$. In general, increased addition of ZBS glass increased sinterability and temperature coefficient of resonant frequency(${\tau}_f$), but it decreased the dielectric constant(${\varepsilon}_r$) and quality factor($Q{\times}f_0$) significantly due to the formation of an excessive liquid. The sintered $BiNbO_4$ ceramics at $900^{\circ}C$ with 15 wt% ZBS glass demonstrated 25 in dielectric constant(${\varepsilon}_r$), 3,700 in quality factor($Q{\times}f_0$), and -32 $ppm/{\circ}C$ in temperature coefficient of resonant frequency(${\tau}_f$).

  • PDF