• Title/Summary/Keyword: Low salinity stress

Search Result 59, Processing Time 0.024 seconds

Development of efficient protocol for screening of rice genotypes using physiological traits for salt tolerance

  • Kim, Sung-Mi;Reddy, Inja Naga Bheema Lingeswar;Yoon, In Sun;Kim, Beom-Gi;Kwon, Taek-Ryoun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.189-189
    • /
    • 2017
  • Salinity is one of the major abiotic stresses that severely affect crop production throughout the world; especially rice plant which is generally categorized as a typical glycophyte as it cannot grow in the presence of salinity. Phenotypic resistance of salinity is expressed as the ability to survive and grow in a salinity condition. Salinity resistance has, at least implicitly, been treated as a single trait. Physiological studies of rice suggest that a range of characteristics (such as low shoot sodium concentration, compartmentation of salt in older rather than younger leaves, high potassium concentration, high $K^+/Na^+$ ratio, high biomass and plant vigour) would increase the ability of the plant to cope with salinity. Criteria for evaluating and screening salinity tolerance in crop plants vary depending on the level and duration of salt stress and the plant developmental stage. Plant growth responses to salinity vary with plant life cycle; critical stages sensitive to salinity are germination, seedling establishment and flowering. We have established a standard protocol to evaluate large rice germplasms for overall performance based on specific physiological traits for salt tolerance at seedling stage. This protocol will help in identifying germplasms which can perform better in the presence of different salinity treatments based on single trait and also combination of different physiological traits. The salt tolerant germplasm can be taken forward into developing better varieties by conventional breeding and exploring genes for salt tolerance.

  • PDF

Salinity Stress Resistance Offered by Endophytic Fungal Interaction Between Penicillium minioluteum LHL09 and Glycine max. L

  • Khan, Abdul Latif;Hamayun, Muhammad;Ahmad, Nadeem;Hussain, Javid;Kang, Sang-Mo;Kim, Yoon-Ha;Adnan, Muhammad;Tang, Dong-Sheng;Waqas, Muhammad;Radhakrishnan, Ramalingam;Hwang, Young-Hyun;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.893-902
    • /
    • 2011
  • Endophytic fungi are little known for their role in gibberellins (GAs) synthesis and abiotic stress resistance in crop plants. We isolated 10 endophytes from the roots of field-grown soybean and screened their culture filtrates (CF) on the GAs biosynthesis mutant rice line - Waito-C. CF bioassay showed that endophyte GMH-1B significantly promoted the growth of Waito-C compared with controls. GMH-1B was identified as Penicillium minioluteum LHL09 on the basis of ITS regions rDNA sequence homology and phylogenetic analyses. GC/MS-SIM analysis of CF of P. minioluteum revealed the presence of bioactive $GA_4$ and $GA_7$. In endophyte-soybean plant interaction, P. minioluteum association significantly promoted growth characteristics (shoot length, shoot fresh and dry biomasses, chlorophyll content, and leaf area) and nitrogen assimilation, with and without sodium chloride (NaCl)-induced salinity (70 and 140 mM) stress, as compared with control. Field-emission scanning electron microcopy showed active colonization of endophyte with host plants before and after stress treatments. In response to salinity stress, low endogenous abscisic acid and high salicylic acid accumulation in endophyte-associated plants elucidated the stress mitigation by P. minioluteum. The endophytic fungal symbiosis of P. minioluteum also increased the daidzein and genistein contents in the soybean as compared with control plants, under salt stress. Thus, P. minioluteum ameliorated the adverse effects of abiotic salinity stress and rescued soybean plant growth by influencing biosynthesis of the plant's hormones and flavonoids.

Determination of Nutrient Contents and In vitro Gas Production Values of Some Legume Forages Grown in the Harran Plain Saline Soils

  • Boga, M.;Yurtseven, S.;Kilic, U.;Aydemir, S.;Polat, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.6
    • /
    • pp.825-831
    • /
    • 2014
  • The aim of this study was to determine the nutritive value of some legume species in salt-affected soils of South-East Anatolian region using chemical composition and in vitro gas production kinetics. In this study, Lotus corniculatus, Trifolium alexandrinum, Medicago sativa were sown and tested in four different locations. A 3 by 4 factorial design with 3 legume species and 4 salt levels (non salty electrical conductivity (EC)<4 dS/m; low salt: 4 dS/m>EC<8 dS/m, medium saline: 8 dS/m>EC<16 dS/m and high salt: 16 dS/m>EC) was used in the study. Results indicated that salinity and plants had no significant effect on ash and ether extract. Dry matter (DM), acid detergent fiber, digestible dry matter, dry matter intake (DMI) were affected by plant, salinity and plant${\times}$salinity interaction. On the other hand neutral detergent fiber, relative feed value (RFV), and DMI were affected by salinity and plant${\times}$salinity interaction. Mineral contents were affected by plant species, salinity and salinity${\times}$plants interactions. In vitro gas production, their kinetics and estimated parameters such as were not affected by salinity whereas the gas production up to 48 h, organic matter digestibility, metabolizable energy (ME), and net energy lactation ($NE_L$) were affected by plant and plant${\times}$salt interaction. Generally RFVs of all species ranged from 120 to 210 and were quite satisfactory in salty conditions. Current results show that the feed value of Medicago sativa is higher compared to Lotus corniculatus and Trifolium alexandrinum.

Effect of Salinity Stress on Growth, Yield, and Proline Accumulation of Cultivated Potatoes (Solanum tuberosum L.) (염 스트레스에 따른 감자 품종 (Solanum tuberosum L.) 간 생육, 수량 및 proline 함량 변이)

  • Im, Ju Sung;Cho, Ji Hong;Cho, Kwang Soo;Chang, Dong Chil;Jin, Yong Ik;Yu, Hong Seob;Kim, Wha Yeong
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.818-829
    • /
    • 2016
  • This study evaluated the responses of 18 potato cultivars to three levels of salinity stress (electrical conductivity, EC: 1.0, 4.0, and $8.0dS{\cdot}m^{-1}$). Stem, leaf, root, chlorophyll, tuber yield, and proline content were investigated and statistically analyzed using analysis of variance (ANOVA) and correlations. Stem number and stem diameter were not affected by salinity, but stem length and aerial weight showed highly significant responses to salinity. Aerial weight decreased with increasing salinity levels in most cultivars, while it increased in some the cultivars 'Daejima', 'Goun', 'Haryeong', and 'LT-8'. Leaf number, leaf area index, and leaf weight were most significantly affected by salinity and the cultivar ${\times}$ salinity interaction. Root length, root weight, total chlorophyll and chlorophyll a were affected by salinity, but not by the cultivar ${\times}$ salinity interaction. The opposite trend was shown in chlorophyll b. Although there was great variability among cultivars, tuber yield decreased in all cultivars, and was most significantly influenced by salinity and the cultivar ${\times}$ salinity interaction. 'Superior', 'Kroda', 'Romana', and 'Duback' gave better tuber yields under salinity at EC 4.0 and $8.0dS{\cdot}m^{-1}$ than the cultivars with better aerial weights. Proline content was increased by salinity in all cultivars, and was more remarkable in the cultivars with better aerial weights than in cultivars such as 'Superior' and 'Kroda' with better tuber yields. Leaf number, leaf area index, leaf weight, and root length parameters were considered to be useful criteria in the evaluation of salt tolerance because of their high positive correlation with tuber yield; however, given its negative correlation with tuber yield under high salinity, proline content was not. Salinity tolerances varied greatly among potato cultivars. The low correlation between growth and yields of aerial parts under high salinity suggests that, in commercial agriculture, it might be more practical to compare relative yields to controls. Additionally, 'Superior', 'Kroda', 'Romana', and 'Duback' might be very useful cultivars to use in breeding programs to develop salinity-tolerant potatoes, as well as for sustainable potato production in saline areas.

Growth and Yield of Rice as Affected by Saline Water Treatment at Different Growth Stages (벼 생육시기별 염수처리 농도와 기간에 따른 생육 및 수량)

  • 이충근;윤영환;신진철;이변우;김정곤
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.6
    • /
    • pp.402-408
    • /
    • 2002
  • Rice cultivar 'Janganbyeo' was cultivated by irrigating the saline waters of high salinity (3.0%) and medium saliniy (1.5%) for 4 days, and low salinity (0.5%) for 30 days at tillering, early meiosis and heading stage. Leaf injury due to salinity was most severe at tillering stage in 1999, but at heading stage in 2000. Heading date was delayed by 1 to 5 days by treatment of saline waters only at tillering stage. Culm length and panicle length were most severely shortened by treatment at early meiosis stage. Yield and yield components except for panicle number were decreased most by high salinity treatment regardless of growth stages. In particular, ripening ratio and grain weight among the yield components were decreased most conspicuously by the saline water treatment regardless of salinity and growth stage. Regarding grain weight grain-filling rate and duration, there is no remarked difference among the concentrations and treatment durations of saline water at tillering stage. However, their reductions were very different among the concentrations and treatment durations of saline water at early meiosis stage, being greatest when treated with high salinity for 4 days and followed by low salinity for 30 days. Also their reductions were very severe only when treated with high salinity for 4 days at heading stage.

Stress Responses of Olive Flounder (Paralichthys olivaceus) to Salinity Changes (염분변화에 따른 넙치(Paralichthys olivaceus)의 스트레스 반응)

  • Park, Hyung-Jun;Min, Byung-Hwa
    • Korean Journal of Ichthyology
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • We tried to determine the optimum salinity for a cultured of olive flounder (Paralichthys olivaceus) by investigating after exposing the fish at different salinity (10, 15, 20 and 25 psu) for 24 and 48 hours compared with control group (fish before transfer to experimental tank). As a control groups, we compared an analyzed with other experimental groups using olive flounder in natural sea water. Hematological parameters including hematocrit (Ht) and hemoglobin (Hb), cortisol and glucose, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), $NH_3$, osmolality, total protein (TP), $Na^+$, $K^+$ and $Cl^-$ mostly exhibited significant changes at 10 and 15 psu groups compared with control groups for 24 and 48 hours exposed. Plasma SOD (superoxide dismutase) and CAT (catalase) activity also increased with experimental groups (10 and 15 psu) compared to the control groups. The expression of HSP70 mRNA was also higher at low-salinity (10 and 15 psu) than at control group. In particular, after 24 hours exposed, it expression to 15 psu groups showed a significant difference compared to the control group. However, after 48 hours exposed, it expression was higher in the 10 psu groups than the control. It is assumed that the changes in the hematological responses and hormone, homeostasis and metabolism were resulted in to protect fish body from stress. Based on these results, we are expected that it will be used as basic data for the culture of olive flounder prepared for low salinity.

Heat tolerance of goats to increased daily maximum temperature and low salinity of drinking water in tropical humid regions

  • Asep Indra Munawar Ali;Sofia Sandi;Lili Warly;Armina Fariani;Anggriawan Naidilah Tetra Pratama;Abdullah Darussalam
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1130-1139
    • /
    • 2024
  • Objective: The daily maximum temperature and seawater level continuously increase as global warming continues. We examined the adaptability and production performance of heat-stressed goats with a supply of low-saline drinking water. Methods: Twelve Kacang and Kacang Etawah cross goats were exposed to two climatic conditions (control, 25℃ to 33℃, 83% relative humidity [RH], temperature humidity index [THI]: 76 to 86; and hot environment, 26℃ to 39℃, 81% RH, THI: 77 to 94) and two salt levels in drinking water (0% and 0.4% NaCl). The experimental design was a Latin Square (4×4) with four treatments and four periods (28 days each). Results: Temperature of the rectal, skin, and udder, and respiration rate rose, reached a maximum level on the first day of heat exposures, and then recovered. Plasma sodium rose at 0.4% NaCl level, while the hot environment and salinity treatments increased the drinking water to dry matter (DM) intake ratio. Water excretion was elevated in the hot environment but lowered by the increase in salinity. Total lying time increased, whereas change position frequency decreased in the hot condition. Lying and ruminating and total ruminating time increased and explained the enhanced DM digestibility in the hot conditions. Conclusion: The goats exhibited a high level of plasma sodium as salinity increased, and they demonstrated physiological and behavioral alterations while maintaining their production performances under increasing daily maximum temperatures.

Effect of Acclimation Methods on Physiological Status of White Shrimp, Litopenaeus vannamei Larvae to Low Salinities (흰다리새우 유생의 저염분 순치방법에 따른 생화학적 특성변화)

  • Kim, Su Kyoung;Shim, Na Young;Jang, Jin Woo;Jun, Je Cheon;Kim, Su-Kyoung;Shin, Yoon Kyong
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.1
    • /
    • pp.6-12
    • /
    • 2017
  • This study focused on the physiological change of the shrimp, Litopenaeus vannamei postlarvae 15 stages, under different acclimation methods up to the endpoint of 4 practical salinity unit (psu). Besides using sea water as the control, two acclimation methods, fast acclimation (50% salinity reduction every 8 hours) and slow acclimation (50% salinity reduction every day), were adapted. Results show that the survival rate, glucose and blood uric nitrogen of each group were not significantly different. However, the ion profile differed according to the acclimation methods. Magnesium and sodium of shrimps acclimated to low salinity in both the methods, showed lower concentration than shrimps at 32 psu sea water. Especially, $Na^+$ concentration, which directly influences the osmolality of shrimp, decreased sharply in the fast acclimated group during the first eight hours (from 32 psu to 16 psu). To reduce acclimation stress, it is recommended to take more than eight hours during the first step for reducing the salinity.

Evaluation of Field Application of Soil Conditioner and Planting Chrysanthemum zawadskii on the Roadside Soils Damaged by Deicing Agents

  • Yang, Ji;Lee, Jae-Man;Yoon, Yong-Han;Ju, Jin-Hee
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.625-636
    • /
    • 2020
  • Background and objects: Soil contamination caused by CaCl2 that is used to deice slippery roads in winter is now recognized as one of the major causes of damage of roadside plants. The aim of this study is to identify the salt mitigation effects of planting Chrysanthemum zawadskii and using a soil conditioner. Methods: The study was conducted at the site where Pinus densiflora f. multicaulis was planted on the roadside between Konkuk University Sageori and Danwol Samgeori located in Chungju-si. We classified the soils collected from the field experimental site according to the degree of the damage caused by deicing agents and divided the site into six blocks of three 80 × 80 cm plots replicated by treatment type. Three selected plots were treated with loess-balls on the soil surface (high salinity with loess-balls, medium salinity with loess-balls, low salinity with loess-balls) and three were left as an untreated control (H = high salinity, M = medium salinity, L = low salinity). The soil properties were measured including pH, EC and exchangeable cations as well as the growth of Chrysanthemum zawadskiia. Results: In the results of soil analysis, pH before planting Chrysanthemum zawadskiia was 6.39-6.74 and in September, five months after planting, the acidity was reduced to 5.43-5.89. Electrical conductivity (EC) was measured to be H > M > L with the higher degree of damage by deicing agents. The analysis of deicing exchangeable cations showed that the content of Ca2+ of soils were significantly correlated to deicing exchangeable cations (Ca2+, Na+, Mg2+) in the shoot part of Chrysanthemum zawadskii. The loess-ball treatment showed a lower content of deicing exchangeable cations than the treatment where Chrysanthemum zawadskiia was planted. Conclusion: In this study, the use of a new system made of loess-balls is proposed as a soil conditioner to protect soils from the adverse effects of road deicing salts. These data suggest that treatment of soil conditioners and planting Chrysanthemum zawadskiia are effective in mitigation of salt stress on the soils damaged by deicing agents.

Effect of hypoosmotic and thermal stress on gene expression and the activity of antioxidant enzymes in the cinnamon clownfish, Amphiprion melanopus

  • Park, Mi-Seon;Shin, Hyun-Suk;Choi, Cheol-Young;Kim, Na-Na;Park, Dae-Won;Kil, Gyung-Suk;Lee, Je-Hee
    • Animal cells and systems
    • /
    • v.15 no.3
    • /
    • pp.219-225
    • /
    • 2011
  • We studied oxidative stress in cinnamon clownfish exposed to hypoosmotic (35 psu ${\rightarrow}$ 17.5 psu and 17.5 psu with prolactin (PRL)) and low temperature ($28^{\circ}C{\rightarrow}24^{\circ}C$ and $20^{\circ}C$) conditions by measuring the expression and activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD), catalase (CAT), and glutathione peroxidase (GPX). The expression and activity of the antioxidant enzymes were significantly higher after the fish were exposed to $24^{\circ}C$, $20^{\circ}C$, and 17.5 psu, and expression was repressed by PRL treatment. Furthermore, we measured $H_2O_2$ and lipid peroxidation levels and found that they were significantly higher after exposure to the hypoosmotic and low-temperature environments. Additionally, we investigated changes in plasma AST and ALT levels after exposure to low temperature and hypoosmotic stress. These levels increased upon exposure of the clownfish to $24^{\circ}C$, $20^{\circ}C$, and 17.5 psu, but the levels of these parameters decreased in the 17.5 psu with PRL treatment during a salinity change. The results indicate that hypoosmotic and low-temperature conditions induce oxidative stress in cinnamon clownfish and that the parameters tested in this study may be indices of oxidative stress in the cinnamon clownfish.