• Title/Summary/Keyword: Low resolution face image

Search Result 37, Processing Time 0.032 seconds

Face Component Extraction Using Multiresolution Image (다해상도 영상을 이용한 얼굴 구성요소 추출)

  • Jang, Kyung-Shik
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3675-3682
    • /
    • 1999
  • This paper proposes the method to extract face components without using the color information and the motion information in a gray image. A laplacian pyramid of the original image is built. Eye and nose candidates are extracted using only the gray information in a low resolution laplacian image and pairs are found that consist of two eye candidates and a nose one. At full resolution, horizontal and vortical edges are found in the regions of face components which are established using the candidates. Using those edge informations, face components are extracted. The experiments have been performed for images with various sizes and positions of face, and show very encouraging result.

  • PDF

Boosting the Face Recognition Performance of Ensemble Based LDA for Pose, Non-uniform Illuminations, and Low-Resolution Images

  • Haq, Mahmood Ul;Shahzad, Aamir;Mahmood, Zahid;Shah, Ayaz Ali;Muhammad, Nazeer;Akram, Tallha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3144-3164
    • /
    • 2019
  • Face recognition systems have several potential applications, such as security and biometric access control. Ongoing research is focused to develop a robust face recognition algorithm that can mimic the human vision system. Face pose, non-uniform illuminations, and low-resolution are main factors that influence the performance of face recognition algorithms. This paper proposes a novel method to handle the aforementioned aspects. Proposed face recognition algorithm initially uses 68 points to locate a face in the input image and later partially uses the PCA to extract mean image. Meanwhile, the AdaBoost and the LDA are used to extract face features. In final stage, classic nearest centre classifier is used for face classification. Proposed method outperforms recent state-of-the-art face recognition algorithms by producing high recognition rate and yields much lower error rate for a very challenging situation, such as when only frontal ($0^{\circ}$) face sample is available in gallery and seven poses ($0^{\circ}$, ${\pm}30^{\circ}$, ${\pm}35^{\circ}$, and ${\pm}45^{\circ}$) as a probe on the LFW and the CMU Multi-PIE databases.

Performance Analysis of Face Recognition by Face Image resolutions using CNN without Backpropergation and LDA (역전파가 제거된 CNN과 LDA를 이용한 얼굴 영상 해상도별 얼굴 인식률 분석)

  • Moon, Hae-Min;Park, Jin-Won;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • To satisfy the needs of high-level intelligent surveillance system, it shall be able to extract objects and classify to identify precise information on the object. The representative method to identify one's identity is face recognition that is caused a change in the recognition rate according to environmental factors such as illumination, background and angle of camera. In this paper, we analyze the robust face recognition of face image by changing the distance through a variety of experiments. The experiment was conducted by real face images of 1m to 5m. The method of face recognition based on Linear Discriminant Analysis show the best performance in average 75.4% when a large number of face images per one person is used for training. However, face recognition based on Convolution Neural Network show the best performance in average 69.8% when the number of face images per one person is less than five. In addition, rate of low resolution face recognition decrease rapidly when the size of the face image is smaller than $15{\times}15$.

Detection of Faces Located at a Long Range with Low-resolution Input Images for Mobile Robots (모바일 로봇을 위한 저해상도 영상에서의 원거리 얼굴 검출)

  • Kim, Do-Hyung;Yun, Woo-Han;Cho, Young-Jo;Lee, Jae-Jeon
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.257-264
    • /
    • 2009
  • This paper proposes a novel face detection method that finds tiny faces located at a long range even with low-resolution input images captured by a mobile robot. The proposed approach can locate extremely small-sized face regions of $12{\times}12$ pixels. We solve a tiny face detection problem by organizing a system that consists of multiple detectors including a mean-shift color tracker, short- and long-rage face detectors, and an omega shape detector. The proposed method adopts the long-range face detector that is well trained enough to detect tiny faces at a long range, and limiting its operation to only within a search region that is automatically determined by the mean-shift color tracker and the omega shape detector. By focusing on limiting the face search region as much as possible, the proposed method can accurately detect tiny faces at a long distance even with a low-resolution image, and decrease false positives sharply. According to the experimental results on realistic databases, the performance of the proposed approach is at a sufficiently practical level for various robot applications such as face recognition of non-cooperative users, human-following, and gesture recognition for long-range interaction.

  • PDF

Hardware Design of Super Resolution on Human Faces for Improving Face Recognition Performance of Intelligent Video Surveillance Systems (지능형 영상 보안 시스템의 얼굴 인식 성능 향상을 위한 얼굴 영역 초해상도 하드웨어 설계)

  • Kim, Cho-Rong;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.22-30
    • /
    • 2011
  • Recently, the rising demand for intelligent video surveillance system leads to high-performance face recognition systems. The solution for low-resolution images acquired by a long-distance camera is required to overcome the distance limits of the existing face recognition systems. For that reason, this paper proposes a hardware design of an image resolution enhancement algorithm for real-time intelligent video surveillance systems. The algorithm is synthesizing a high-resolution face image from an input low-resolution image, with the help of a large collection of other high-resolution face images, called training set. When we checked the performance of the algorithm at 32bit RISC micro-processor, the entire operation took about 25 sec, which is inappropriate for real-time target applications. Based on the result, we implemented the hardware module and verified it using Xilinx Virtex-4 and ARM9-based embedded processor(S3C2440A). The designed hardware can complete the whole operation within 33 msec, so it can deal with 30 frames per second. We expect that the proposed hardware could be one of the solutions not only for real-time processing at the embedded environment, but also for an easy integration with existing face recognition system.

Real-time face tracking for high-resolution intelligent surveillance system (고해상도 지능형 감시시스템을 위한 실시간 얼굴영역 추적)

  • 권오현;김상진;김영욱;백준기
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.317-320
    • /
    • 2003
  • In this paper, we present real-time, accurate face region detection and tracking technique for an intelligent surveillance system. It is very important to obtain the high-resolution images, which enables accurate identification of an object-of-interest. Conventional surveillance or security systems, however, usually provide poor image quality because they use one or more fixed cameras and keep recording scenes without any clue. We implemented a real-time surveillance system that tracks a moving person using pan-tilt-zoom (PTZ) cameras. While tracking, the region-of-interest (ROI) can be obtained by using a low-pass filter and background subtraction. Color information in the ROI is updated to extract features for optimal tracking and zooming. The experiment with real human faces showed highly acceptable results in the sense of both accuracy and computational efficiency.

  • PDF

Super Resolution Fusion Scheme for General- and Face Dataset (범용 데이터 셋과 얼굴 데이터 셋에 대한 초해상도 융합 기법)

  • Mun, Jun Won;Kim, Jae Seok
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1242-1250
    • /
    • 2019
  • Super resolution technique aims to convert a low-resolution image with coarse details to a corresponding high-resolution image with refined details. In the past decades, the performance is greatly improved due to progress of deep learning models. However, universal solution for various objects is a still challenging issue. We observe that learning super resolution with a general dataset has poor performance on faces. In this paper, we propose a super resolution fusion scheme that works well for both general- and face datasets to achieve more universal solution. In addition, object-specific feature extractor is employed for better reconstruction performance. In our experiments, we compare our fusion image and super-resolved images from one- of the state-of-the-art deep learning models trained with DIV2K and FFHQ datasets. Quantitative and qualitative evaluates show that our fusion scheme successfully works well for both datasets. We expect our fusion scheme to be effective on other objects with poor performance and this will lead to universal solutions.

Research Trends for Deep Learning-Based High-Performance Face Recognition Technology (딥러닝 기반 고성능 얼굴인식 기술 동향)

  • Kim, H.I.;Moon, J.Y.;Park, J.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.43-53
    • /
    • 2018
  • As face recognition (FR) has been well studied over the past decades, FR technology has been applied to many real-world applications such as surveillance and biometric systems. However, in the real-world scenarios, FR performances have been known to be significantly degraded owing to variations in face images, such as the pose, illumination, and low-resolution. Recently, visual intelligence technology has been rapidly growing owing to advances in deep learning, which has also improved the FR performance. Furthermore, the FR performance based on deep learning has been reported to surpass the performance level of human perception. In this article, we discuss deep-learning based high-performance FR technologies in terms of representative deep-learning based FR architectures and recent FR algorithms robust to face image variations (i.e., pose-robust FR, illumination-robust FR, and video FR). In addition, we investigate big face image datasets widely adopted for performance evaluations of the most recent deep-learning based FR algorithms.

Gender Classification of Low-Resolution Facial Image Based on Pixel Classifier Boosting

  • Ban, Kyu-Dae;Kim, Jaehong;Yoon, Hosub
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.347-355
    • /
    • 2016
  • In face examinations, gender classification (GC) is one of several fundamental tasks. Recent literature on GC primarily utilizes datasets containing high-resolution images of faces captured in uncontrolled real-world settings. In contrast, there have been few efforts that focus on utilizing low-resolution images of faces in GC. We propose a GC method based on a pixel classifier boosting with modified census transform features. Experiments are conducted using large datasets, such as Labeled Faces in the Wild and The Images of Groups, and standard protocols of GC communities. Experimental results show that, despite using low-resolution facial images that have a 15-pixel inter-ocular distance, the proposed method records a higher classification rate compared to current state-of-the-art GC algorithms.

Face Verification System Using Optimum Nonlinear Composite Filter (최적화된 비선형 합성필터를 이용한 얼굴인증 시스템)

  • Lee, Ju-Min;Yeom, Seok-Won;Hong, Seung-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.44-51
    • /
    • 2009
  • This paper addresses a face verification method using the nonlinear composite filter. This face verification process can be simple and speedy because it does not require any reprocessing such as face detection, alignment or cropping. The optimum nonlinear composite filter is derived by minimizing the output energy due to additive noise and an input scene while maintaining the outputs of training images constant. The filter is equipped with the discrimination capability and the robustness to additive noise by minimizing the outputs of the input scene and the noise, respectively. We build the nonlinear composite filter with two training images and compare the filter with the conventional synthetic discriminant function (SDF) filter. The receiver operating characteristics (ROC) curves are presented as a metric for the performance evaluation. According to the experimental results the optimum nonlinear composite filter is shown to be a robust scheme for face verification in low resolution and noise environments.