• Title/Summary/Keyword: Low relative humidity

Search Result 468, Processing Time 0.036 seconds

Impact of Tidal Effects on Fog Events in the Western Coast of Korea (서해 연안 해역에서의 조석현상이 안개에 미치는 영향)

  • An, Hye Yeon;Jeong, Ju-Hee;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.30 no.11
    • /
    • pp.925-936
    • /
    • 2021
  • The study was aimed to investigate the correlation between tidal effects and fog occurrence in Incheon and Mokpo, which are located in the middle and southern coasts of the West Sea of Korea, respectively. The investigation used meteorological data obtained from the automated synoptic observing systems and automatic weather stations and ocean data from tide stations from 2010 to 2019. Fog occurrence frequency was highest at high tide (Incheon, 41%; Mokpo, 45%). During fog event days at high tide, the dew-point depression was low (Incheon, 0.5℃; Mokpo, 0.4℃) and the relative humidity was high (Incheon, 97%; Mokpo, 98%). The wind speed was 2.4 m/s in Incheon and 2.0 m/s in Mokpo, and the main wind directions were west-southwesterly from Incheon and southwesterly from Mokpo. In the fog case study, tidal flats were covered with water before and after the fog started. During the fog period, both stations experienced negative air-sea temperature differences, low dew-point depression, and high relative humidity were maintained, with weak winds forming from the tidal flats to the shore.

Analyzing the Effect of Climatic Variables on Growth and Yield of Rice in Chuncheon Region (춘천지역의 기상요소가 벼 생육과 수량에 미치는 영향 해석)

  • Lee, An-Soo;Kim, Jae-Rok;Cho, Youn-Sang;Kim, Yong-Bog;Ham, Jin-Kwan;Jeong, Jeong-Su;Sa, Jong-Gu;Shin, Jin-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.99-106
    • /
    • 2011
  • Here we reported an analyzing result for the relationship between climatic variables and rice(c.v. Odaebyeo and Ilpumbyeo) yield characteristics (including some growth characteristics) based on a long-term observed data at GARES and at KMA for rice and weather, respectively. Most of crop parameters investigated, such as heading date, culm height, panicle number $m^{-2}$, grain number $panicle^{-1}$ ripening rate, 1,000 grain weight and yield were strongly affected by wind velocity and relative humidity, as well as by daily mean air temperature, precipitation, sunshine hours and daily variations in air temperature depending on variety and crop developmental stages. Air velocity and relative humidity had not been studied as climatic variables affecting on the characteristics of rice growth and yield, however, they turned out to affect all the characteristics of rice investigated, especially ripening rate and yield, as much as any other climatic variables in this study. Air velocity appeared to affect highly the culm height and yield of Odaebyeo and ilpumbyeo. Relative humidity appeared to affect highly grain number and ripening rate of Odaebyeo and yield of Ilpumbyeo. Consequently Rice yield revealed to increase in the climatic conditions of high air velocity and low relative humidity.

Effects of Temperature and Relative Humidity on Water Soluble Vitamin Contents in Commercial Vitamin Tablet (저장 온도 및 상대습도가 비타민 정제 중 수용성 비타민 함량의 변화에 미치는 영향)

  • Lee, Jae-Hwang;Kim, Sae-Gon;Lee, Dong-Un;Park, Seok-Jun;Lee, Jin-Hee;Lee, Kang-Pyo;Kim, Dong-Seob;Choi, Sung-Won;Baik, Moo-Yeol
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1028-1034
    • /
    • 2005
  • Effects of temperature and relative humidity on contents of water-soluble vitamins (vitamins $B_1,\;B_2,\;B_3,\;B_6$, and C) of two commercial tablets ("Multivitamin Dandelion" and "Chewable vitamin C") were investigated. When stored at various temperatures (25, 35, and $45^{\circ}C$) with cap, all measured vitamins were stable and degraded very slowly during 24 weeks of storage; low relative humidity (11% RH) without cap also provided stability during storage period. At higher relative humidities (75 and 100% RH), contents of all water-soluble vitamins, except vitamins $B_2\;and\;B_3$, decreased significantly at early storage period. These results showed that stability of water-soluble vitamins is highly dependent on relative humidity rather than storage temperature.

Studies on the Prevention of Excessive Drying Leaves during Burley Tobacco Curing I. Effect of Temperature and Relative Humidity on the Production of Excessive Drying Leaves (버어리종 담배건조시 급건엽 발생방지에 관한 연구 I. 온습도의 영향)

  • 배성국;임해건;추홍구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.4
    • /
    • pp.420-425
    • /
    • 1986
  • This study was conducted to investigate the influence of air temperature and relative humidity on excessive drying rate of burley tobacco. In experiment I, 4 temperatures and I humidity by day and air curing by night were treated from initial curing stage. In experiment II, 15 combinations of 3 temperatures and 5 humidities were applied from the yellow stage of cure. Yellowish cured leaves resulted from overdrying at high temperature and especially, at low humidity. How- ever, these were not produced at 75-80% RH and under 35$^{\circ}C$ by day with air curing b y night. The proper range of temperature and humidity for desirable color of cured leaf were the combinations of 30$^{\circ}C$, 75-80% RH or 35$^{\circ}C$, 80-85% RH. As excessive drying leaves increased, physical properties of cured leaves were poorer and chemical contents were less decomposed.

  • PDF

Gelatin Film Coated Fiber-Optic Directional Coupler-Based Humidity Sensors (젤라틴 코팅을 이용한 광섬유형 방향성 결합기 기반 습도 센서)

  • Son, Gyeongho;Kim, Minchul;Yu, Kyoungsik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.865-871
    • /
    • 2017
  • In this paper, a gelatin layer was formed on the surface of the twisted fiber-optic couplers fabricated by hydrofluoric acid, which can be used to measure relative humidity. The proposed method of sensors has advantage of low cost compared with the sensors based on the conventional electronic devices and takes beneficial characteristics of optical fibers and light. The fiber-optic sensors presented in this study show a measurement from about 40% to 85% relative humidity, and the experimental results agree well with the calculated results. Based on the design presented in this paper, the structure will enable promising applications in the detecting humidity and various hazardous gases.

Effects of Temperatures and Relative Humidities on the Development of Brown Planthopper, Nilaparvata Zugens (Stal) (온도와 습도가 벼멸구의 생육에 미치는 영향에 관한 연구)

  • Park Chung Gyoo;Hyun Jai Sun
    • Korean journal of applied entomology
    • /
    • v.22 no.4 s.57
    • /
    • pp.262-270
    • /
    • 1983
  • The newly hatched nymphs of brown planthopper(BPH) were reared individually for two generations in test tubes, where young rice seedling was planted on agar solution, at $30^{\circ}C,\;25^{\circ}C\;and\;20^{\circ}C\;with\;95\%,\;75\%,\;65\%\;and\;35\%$ R.H. Effects of $30^{\circ}C$ on the development of BPH when compared with those of $25^{\circ}C$ are followings. Egg period, nymphal period, and adult longevity were shortened. Nymphal mortality was increased and the number of oviposited eggs was decreased. Hatchability was zero per cent because the eggs were either unfertilized or died before finishing the development. At the low temperature of $20^{\circ}C$, in comparision with $25^{\circ}C$, the developmental period of nymphs and eggs was considerably lengthened, and adult longevity was shortened, the number of oviposited eggs was decreased. The nymphal mortality was higher at high relative humidity $(above\;75\%\;RH)$ than that at low relative humidity $(under\;65\%\;RH)$. Under the condition of high relative humidities, the adult longevity was shortened, and the number of oviposited eggs was decreased.

  • PDF

Effect of Vapor Pressure Deficit on the Evapotranspiration Rate and Graft-taking of Grafted Seedling Population under Artificial Lighting (인공광하에서 접목묘 개체군의 증발산속도와 활착에 미치는 포차의 영향)

  • Yong Hyeon Kim;Chul Soo Kim;Ji Won Lee;Sang Gyu Lee
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.232-236
    • /
    • 2001
  • Four air temperature levels of 23, 25, 27 and 29$^{\circ}C$, three humidity levels of 85, 90 and 95% R.H. at photosynthetic photon flux (PPF) of 50 $\mu$mol.m$^{-2}$ .s$^{-1}$ were provided to investigate the effect of vapor pressure deficit on the evapotranspiration rate (EVTR) and graft-taking of watermelon grafted seed-increase. Thus EVTR of grafted seedlings increased with increasing air temperature at high humidity of 95%R.H. At relatively low humidity of 85% R.H., grafted seedlings showed a high EVTR and some wilting of scions was observed at this condition. This result would be ascribed to the low supply of water to vascular bundles according to the insufficient joining of scions and rootstocks. Differences in EVTR between 90% R.H. and 95% R.H. were not observed. Grafted seedlings showed high graft-taking at high relative humidity. Relative humidity had highly influenced to the graft-taking as compared to the air temperature. Graft-taking increased with decreasing vapor pressure deficit. Graft-taking greater than 90% was found at vapor pressure deficit less than 0.4kPa which could be obtained at humidity higher than 90% R.H. Therefore it is required to control the humidity higher than 90% R.H. for suppressing EVTR of grafted seedlings and preventing some wilting of scoins and thus enhancing the graft-taking of grafted seedlings.

  • PDF

An Experimental Study of Verification for PEMFC's 1-Dimensional Simulation (PEMFC 1차원 시뮬레이션 검증을 위한 실험적 연구)

  • Moon, Cheor-Eon;Ahn, Seong-Yool;Yang, Jang-Sik;Choi, Gyung-Min;Kim, Duck-Jool
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.191-195
    • /
    • 2007
  • In this study, we estimated the performance of PEMFC's unit cell as changing operating temperature in different inlet humidity condition at cathode side but anode dry, and tried to match experimental results with 1-dimensional simulation. We used $Nafion^{\circledR}112$ membrane and a self-manufactured PEMFC with active area of $25cm^{2}$ was used in this study. The range of operating temperature was $40{\sim}70^{\circ}C$ and oxygen through bubbled humidity chamber was supplied $0{\sim}80$% humidity condition as changing water temperature in humidity chamber. For figuring out governing equations, represent water contents in electrolyte membrane, the linear forward difference method was applied about time progress and quadratic central difference method was used about space progress. It was assumed that pressure terms were linearly changed due to thin electrolyte membrane. In low operating temperature condition, $40{\sim}60^{\circ}C$, increasing temperature rarely effected cell performance but we can see performance drop at $70^{\circ}C$. By modifying Henrry's constant and/or diffusion coefficient, the modified one-dimensional model was accomplished for calculation.

  • PDF

Humidity Aging Effect on Adhesive Strength of Composite Single-lap Joint

  • Kim, Myungjun;Kim, Yongha;Kim, Pyunghwa;Roh, Jin-Ho;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2017
  • Because adhesively bonded joints are used in many structural systems, it is important to predict accurate adhesive strengths. Composite aircraft with many joints are easily exposed to low temperatures and high relative humidity. This paper presents a humidity aging effect on the adhesive strength of a composite single-lap joint (SLJ). The adhesive strength of the SLJ is predicted using a finite element analysis with a cohesive zone model (CZM) technique. The humidity aging effect is evaluated based on the adhesive strength and CZM parameters. A lap joint test is carried out on the composite SLJ specimens, which are exposed for four months of 100% R.H. at $25^{\circ}C$. The predicted strengths are in good agreement with experimental data, and the actual crack propagation is satisfactorily simulated using the local CZM technique.

Humidity sensors using porous silicon layer with mesa structure (메사구조를 갖는 다공질 실리콘 습도 센서)

  • Jeon, Byung-Hyun;Yang, Kyu-Yull;Kim, Seong-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.25-28
    • /
    • 2000
  • A capacitance-type humidity sensors in which porous silicon layer is used as humidity-sensing material was developed. This sensors was fabricated monolithically to be compatible with the typical IC process technology except for the formation of porous silicon layer. As the sensors is made as a mesa structure, the correct measurement of capacitance is expected because it can remove the effect of the parasitic capacitance from the bottom layer and another junctions. To do this, the sensor was fabricated using process steps such as localized formation of porous silicon, oxidation of porous silicon layer and etching of oxidized porous silicon layer. From completed sensors, capacitance response was measured on the relative humidity of 25 to 95% at room temperature. As the result the measured capacitance showed the increase over 300% at the low frequency of 120Hz, and showed little dependence on the temperature between 10 to $40^{\circ}C$.

  • PDF