• Title/Summary/Keyword: Low radiation

Search Result 2,630, Processing Time 0.034 seconds

A LONG-TERM FIELD TEST OF A LARGE VOLUME IONIZATION CHAMBER BASED AREA RADIATION MONITORING SYSTEM DEVELOPED AT KAERI

  • Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Kim, Jung-Bok;Kim, Young-Kyun;Jin, Hyung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2009
  • An Area Radiation Monitoring System (ARMS) ionization chamber, which had an 11.8 L active volume, was fabricated and performance-tested at KAERI. Low leakage currents, linearities at low and high dose rates were achieved from performance tests. The correlation coefficients between the ionization currents and the dose rates are 1 at high dose rate and 0.99 at low dose rate. In this study, an integration-type ARMS ionization chamber was tested over a year for an evaluation of its long-term stability at a radioisotope (RI) repository of the Young-gwang nuclear power plant. The standard deviation of dose rate of 1 day data and over a 100-days mean value were 6.2 $\mu$R/h and 2.9 $\mu$R/h, respectively. The fabricated ARMS ionization chamber showed stable performance from the results of the long-term tests. Design and performance characteristics of the fabricated ionization chamber for the ARMS from performance-tests are also addressed.

Effects of low dose $\gamma$-ray on the early growth of tomato and the resistance to subsequent high doses of radiation (저선량 $\gamma$선 조사가 토마토의 초기생육과 후속고선량 $\gamma$선 저항성에 미치는 영향)

  • Kim, Jae-Sung;Kim, Jin-Kyu;Back, Myung-Hwa;Kim, Dong-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • Tomato (Lycopericum esculentum $M_{ILL}$ cv. Seokwang and cv. Housemomotaro) seeds were irradiated with the doses of $1{\sim}20$ Gy from $^{60}Co$ $\gamma$-ray source to investigate the effect of the low dose $\gamma$-ray radiation on the early growth and resistance to subsequent high dose of radiation. Germination rate of seeds irradiated with low dose $\gamma$-ray was enhanced in Seokwang cultivar but not in Housemomotaro cultivar. Seedling height increased in 4 Gy and 8 Gy irradiation group of both cultivars. Plant height of Seokwang cultivar was depressed in low dose irradiation group but fresh weight was increased in 2 Gy and 4 Gy irradiation group. In Housemomotaro cultivar, plant height increased in 12 Gy and 20 Gy irradiation group and fresh weight increased in 4 Gy and 20 Gy irradiation group. Growth inhibition of tomato plants by high dose radiation was noticeably reduced by pre-irradiation of low dose radiation. Resistance to subsequent high dose of radiation was enhanced in 2 Gy and 8 Gy Irradiation group of Seokwang cultivar and in 2 Gy and 12 Gy irradiation group of Housemomotaro cultivar.

  • PDF

Assessment of Dose Distributions According to Low Magnetic Field Effect for Prostate SABR

  • Son, Jaeman;An, Hyun Joon;Choi, Chang Heon;Chie, Eui Kyu;Kim, Jin Ho;Park, Jong Min;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.1
    • /
    • pp.26-31
    • /
    • 2019
  • Background: Stereotactic ablative radiotherapy (SABR) plans in prostate cancer are compared and analyzed to investigate the low magnetic effect (0.35 T) on the dose distribution, with various dosimetric parameters according to low magnetic field. Materials and Methods: Twenty patients who received a 36.25 Gy in five fractions using the MR-IGRT system (ViewRay) were studied. For planning target volume (PTV), the point mean dose ($D_{mean}$), maximum dose ($D_{max}$), minimum dose ($D_{min}$) and volumes receiving 100% ($V_{100%}$), 95% ($V_{95%}$), and 90% ($V_{90%}$) of the total dose. For organs-at-risk (OARs), the differences compared using $D_{max}$, $V_{50%}$, $V_{80%}$, $V_{90%}$, and $V_{100%}$ of the rectum; $D_{max}$, $V_{50%}$, $V_{30Gy}$, $V_{100%}$ of the bladder; and $V_{30Gy}$ of both left and right femoral heads. For both the outer and inner shells near the skin, $D_{mean}$, $D_{min}$, and $D_{max}$ were compared. Results and Discussion: In PTV analysis, the maximum difference in volumes ($V_{100%}$, $V_{95%}$, and $V_{90%}$) according to low magnetic field was $0.54{\pm}0.63%$ in $V_{100%}$. For OAR, there was no significant difference of dose distribution on account of the low magnetic field. In results of the shells, although there were no noticeable differences in dose distribution, the average difference of dose distribution for the outer shell was $1.28{\pm}1.08Gy$ for $D_{max}$. Conclusion: In the PTV and OARs for prostate cancer, there are no statistically-significant differences between the plan calculated with and without a magnetic field. However, we confirm that the dose distribution significantly increases near the body shell when a magnetic field is applied.

Research on the Hematological Changes in Accordance with Radiation Dose and Radiation Exposure period of the Medical Radiation Workers (의료 방사선 종사자의 피폭기간 및 피폭선량과 혈액성분 변화에 대한 조사)

  • Cho, Jihwan;Jin, Seongjin;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.495-502
    • /
    • 2016
  • In this study, we analyzed the effects of radiation exposure, as compared to the hematological parameters change of medical radiation workers and the public. The mean value of all hematological parameters were in the normal range. Eosin mean value of the radiation workers($2.52{\pm}1.79%$) showed that a significantly lower than the control group($2.92{\pm}1.39%$). In the comparison of the results depending on the occupation period, it showed high value that the mean of the radiation workers group WBC, platelet, Lymph, Mono, Baso. Over 20 years of radiation workers WBC, Mono showed low values and less than 10 years of radiation workers mean value of Baso showed low values, there was no statistical significance. In the comparison of the results depending on the 4 years cumulative radiation dose, Over 5.0 mSv of Radiation works RBC($4.61{\pm}0.53$ vs $4.91{\pm}0.38$), Hct($41.51{\pm}4.07$ vs $43.97{\pm}3.40$), Eosin($1.74{\pm}1.14$ vs $2.92{\pm}1.39$) showed low value, it was statistical significance. 0.5~1.0 mSv radiation exposure workers Hb ($13.93{\pm}1.75$) showed a significantly lower value than that of the control group ($14.90{\pm}1.29$).

PREVENTION OF CIGARETTE SMOKE INDUCED LUNG CANCER BY LOW LET IONIZING RADIATION

  • Sanders, Charles L.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.539-550
    • /
    • 2008
  • Lung cancer is the most prevalent global cancer, ${\sim}90%$ of which is caused by cigarette smoking. The LNT hypothesis has been inappropriately applied to estimate lung cancer risk due to ionizing radiation. A threshold of ${\sim}1\;Gy$ for lung cancer has been observed in never smokers. Lung cancer risk among nuclear workers, radiologists and diagnostically exposed patients was typically reduced by ${\sim}40%$ following exposure to <100 mSv low LET radiation. The consistency and magnitude of reduced lung cancer in nuclear workers and occurrence of reduced lung cancer in exposed non-worker populations could not be explained by the HWE. Ecologic studies of indoor radon showed highly significant reductions in lung cancer risk. A similar reduction in lung cancer was seen in a recent well designed case-control study of indoor radon, indicating that exposure to radon at the EPA action level is associated with a decrease of ${\sim}60%$ in lung cancer. A cumulative whole-body dose of ${\sim}1\;Gy$ gamma rays is associated with a marked decrease in smoking-induced lung cancer in plutonium workers. Low dose, low LET radiation appears to increase apoptosis mediated removal of $\alpha$-particle and cigarette smoke transformed pulmonary cells before they can develop into lung cancer.

Environmental Radiation Level in Korea($1961{\sim}1980$) (한국의 환경방사선준위(環境放射線準位)($1961{\sim}1980$))

  • Rho, Chae-Shik
    • Journal of Radiation Protection and Research
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 1981
  • This report presents the results of the environmental radiation program at Korea Advanced Energy Research Institute (KAERI) ($37^{\circ}38'N,\;127^{\circ}05'E$) and its surroundings for the last two decades (January, 1961 through December, 1980). In the 1960s, the monthly mean levels of environmental external radiation encountered ranged from a low of 14.2 microroentgen per hour to a high of 42.2 microroentgen per hour with a mean of 21.7 microroentgen per hour, while in 1970s it ranged from a low of 12.4 microroentgen per hour to a high of 40.8 microroentgen per hour with a mean of 20.4 microroentgen per hour. It may, therefore, be said that environmental radiation dose rates remained almost unchanged for the two decades except for the second half of 1960s and the first half of 1970s during which the off-site and on-site patterns were frequently unlike in form and intensity with appreciable differences between average values. Particular results of interest with respect to the effects of the fallout gamma dose rate on environmental radiation show that elevated levels were encountered in association with the deposits of fresh debris from Chinese and Russian nuclear weapons tests in particular.

  • PDF

A Study on the Reduction of Cosmic Radiation Exposure by Flight Crew (항공승무원의 우주방사선 피폭 저감에 관한 연구)

  • Ahn, Hee-Bok;Kim, Kyu-Wang;Choi, Youn-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The purpose of this study is to analyze the radiation dose data of the space crew of the flight crew and to present a plan for the health management of the flight crew on the basis of the analysis. The analysis show that the average exposure dose of the flight attendants continued to rise, and the exposure dose of the flight attendants was five(5) times higher than that of the radiation workers. As a way to reduce the effects of cosmic radiation, this paper suggests appropriate personnel allocation by model, balanced allocation of high and low latitude routes by crew according to the aircraft type, and a low altitude flight plan for high latitude flight. This study will help aviation crew members understand cosmic radiation and trust in the company's policies. In the future, it will be necessary to enhance the flight safety of the crew by deriving meaningful results by analyzing data related to cosmic radiation of various routes.

BETTER UNDERSTANDING OF THE BIOLOGICAL EFFECTS OF RADIATION BY MICROSCOPIC APPROACHES

  • Kim, Eun-Hee
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.551-560
    • /
    • 2008
  • Radiation has stochastic aspects in its generation, its choice of interaction mode during traveling in media, and its impact on living bodies. In certain circumstances, like in high dose environments resulting from low-LET radiation, the variance in its impact on a target volume is negligible. On the contrary, in low dose environments, especially when they are attributed to high-LET radiation, the impact on the target carries with it a large variance. This variation is more significant for smaller target volumes. Microdosimetric techniques, which have been developed to estimate the distribution of radiation energy deposited to cellular and subcellular-sized targets, contrast with macrodosimetric techniques which count only the average value. Since cells and DNA compounds are the critical targets in human bodies, microdosimetry, or dose estimation by microscopic approach, helps one better analyze the biological effects of radiation on the human body. By utilizing microbeam systems designed for individual cell irradiation, scientists have discovered that human cells exhibit radiosensitive reactions without being hit themselves (bystander effect). During the past 10 or more years, a new therapeutic protocol using discontinuous multiple micro-slit beams has been investigated for its clinical application. It has been suggested that the beneficial bystander effect is the essence of this protocol.