• 제목/요약/키워드: Low pressure casting

검색결과 69건 처리시간 0.027초

Improving the Mechanical Properties of Salt Core through Reinforcing Fibers

  • Ahrom Ryu;Soyeon Yoo;Min-Seok Jeon;Dongkyun Kim;Kiwon Hong;Sahn Nahm;Ji-Won Choi
    • 센서학회지
    • /
    • 제32권3호
    • /
    • pp.159-163
    • /
    • 2023
  • Salt cores have attracted considerable attention for their application to the casting process of electric vehicle parts as a solution to ecological issues. However, the salt core still has low mechanical strength for use in high-pressure die casting. In this study, we investigated the improvements in the bending strength of KCl-based salt cores resulting from the use of reinforcing materials. KCl and Na2CO3 powders were used as matrix materials, and glass fiber and carbon fiber were used as reinforcing materials. The effects of carbon fiber and glass fiber contents on the bending strength properties were investigated. Here, we obtained a new fiber-reinforced salt core composition with improved bending strength for high-pressure die casting by adding a relatively small amount of glass fiber (0.3 wt%). The reinforced salt core indicates the improved properties, including a bending strength of 49.3 Mpa, linear shrinkage of 1.5%, water solubility rate of 16.25 g/min·m2 in distilled water, and hygroscopic rate of 0.058%.

AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구 (A Study on the Die-casting Process of AM50 Magnesium Alloy)

  • 장창우;김순국;한수훈;서용권;강충길;이준희;박준홍
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.415-418
    • /
    • 2005
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modem vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. Although Mg alloys are fulfilling the demands for low specific weight materials with excellent machining and casting abilities, they are still not used in die casting process to the same extent as the competing material aluminium. One of the reasons is that effects of various forming variables for die casting process is not closely examined from the viewpoint of die design. In this study, step die and flowability tests for AM60 were performed by die casting process according to various combination of casting pressure and plunger velocity. Microstructure and Victors hardness tests were examined and performed for each specimen to verify effects of forming conditions.

  • PDF

알루미늄 합금의 소실모형주조 중 기포 형성 기구에 관한 연구 (The Study on the Formation Mechanism of Gas Pore During Lost Foam Casting of Al alloys)

  • 신승렬;한상원;이경환;이진형
    • 한국주조공학회지
    • /
    • 제23권5호
    • /
    • pp.268-275
    • /
    • 2003
  • The mechanism of the hydrogen gas pore formation was investigated in Lost Foam Casting of Al-alloy by reduced pressure test and real casting. The hydrogen gas pick-up was affected by the formed gas during the decomposition of polystyrene in addition to the liquid product. It depended on pouring temperature and a proper temperature of metal front gave the minimum hydrogen pick-up. At a low pouring temperature, the hydrogen went into the melt mainly from entrapped liquid product of polystyrene but pores were formed from the gas as well as the liquid product at a high pouring temperature. The mold flask evacuation down to 710torr decreased the gas porosity down by around 0.4% vol%. The entrapped decomposition product of polystyrene in the melt was observed through the visualization of filling behavior of Al alloy-melt with the high speed camera.

세라믹 용융코어의 미세조직과 기계적 특성 (Evaluation of Microstructure and Mechanical Property of a Novel Ceramic Salt Core)

  • 이준호;이덕영
    • 한국주조공학회지
    • /
    • 제28권4호
    • /
    • pp.166-169
    • /
    • 2008
  • This study deals about the development of fusible core with low melting temperature by addition of ceramic particles. A new concept of salt core was introduced to produce an integrated casting part having a complicated inner shape or requiring under-cut in high pressure die casting or squeeze casting process. The mechanical properties of fusible core were improved due to the addition of ceramic particles which helped to produce fine microstructure. The new technology for the preparation of new fusible core materials which possess high compression strength was established. Addition of ceramics particles increased the mechanical properties of fusible core materials. There was an increasing relationship between percentage of ceramic particles and mechanical strength was existed up to 60%.

용탕단조법으로 제조된 $Al_2O_3/AC4C$ 복합재료의 피로균열 전파거동에 관한 연구 (A Study on the Fatigue Crack Propagation Behavior of $Al_2O_3/AC4C$ Composites Made by Squeeze Casting Process)

  • 여인동;이지환
    • 한국주조공학회지
    • /
    • 제15권4호
    • /
    • pp.388-396
    • /
    • 1995
  • This study has been conducted with the purpose of examining the fatigue crack growth characteristics of $Al_2O_3$ short fiber reinforced aluminum matrix composites made by squeeze casting process with different applied pressure and binder amount. Fatigue crack growth experiments have been performed under constant load amplitude method with a fixed load ratio. The rate of crack propagation was decreased with binder amount as well as applied pressure. Also fatigue crack growth path in matrix was changed from flat to rough mode with an increase of applied pressure. In the composites, fatigue crack was propagated to interface between matrix and reinforcement at 10MPa, but it was propagated to reinforcement at 20MPa. The major reason of thee result was considered that interfacial bonding force and microstructure of matrix were improved due to an increase of applied pressure. Localized ductile striation in the composites was observed at low growth rate region and such a phenominon was remarkable with an increase of applied pressure. At high growth rate region, the propensity of fracture appearance was changed from interfacial debonding to reinforcement fracture with an increase of applied pressure.

  • PDF

다이캐스팅법에 의해 제조된 SiC 입자강화 알루미늄합금기 복합재료의 미세조직 및 인장특성 (Microstructure and Tensile Properties of $SiC_p$-reinforced Aluminum Alloy Composites Fabricated by Die Casting Method)

  • 이태원;이지환
    • 한국주조공학회지
    • /
    • 제17권4호
    • /
    • pp.385-392
    • /
    • 1997
  • The main objective of this study is to investigate the microstructure and tensile strength of $SiC_p$/Al alloy composites fabricated by die casting method. Die casting was performed using the preheated mold at the pouring temperature range of $620{\sim}750^{\circ}C$ under the pressure of $1,039 kgf/cm^2$. The low speed and a following high injection speed were 0.4 and 2.1 m/s, respectively. The microstructure of $SiC_p$/Al alloy composites fabricated by die casting method was found to be finer than that of composites fabricated by gravity casting. Also, SiC particulates were homogeneously distributed in refined Al matrix due to rapid solidification. The tensile strength of $SiC_p$/Al alloy composites fabricated by die casting method was found to be varied with cast temperature. The maximun tensile strength of $SiC_p$(10 vol.% and 20 vol.%)/Al alloy composites showed 380 MPa at the cast temperature of $750^{\circ}C$ and 363 MPa at the cast temperature of $700^{\circ}C$, respectively.

  • PDF

유기물 조성에 따른 알루미나 테이프의 열간 가압 거동 (Effect of Organic Additive Composition on Isostatic Thermocompression Behavior of Alumina Tapes)

  • 이명현;박일석;김대준;이득용
    • 한국세라믹학회지
    • /
    • 제37권8호
    • /
    • pp.824-831
    • /
    • 2000
  • Alumina tapes, having various ratios of alumina to alumina+binder+plasticizer (a/(a+o)) and binder to binder+plasticizer(b/(b+p)), were prepared by the tape casting method. The tapes were thermocompressed varying the thermocompression parameters such as temperature, pressure, and duration time. Among the parameters, the pressure was the most influential to the tape packing density. The packing density varied in two different ways depending on the a/(a+o) ratio. For the tapes having low a/(a+o) ratio, a saturation density was reached by applying very a low pressure of 1 MPa. For tapes with high a/(a+o), on the contrary, the saturation density was obtained at a relatively high pressure. These different responses to the pressure are attributed to the fact that the rearrangement of alumina particles by the pressure becomes easy as an organic content in the tapes is high.

  • PDF

전자패키징용 고열전도도-저열팽창계수 SiCp/Al 금속복합재료의 제조공정 및 특성평가 (Fabrication Process and Characterization of High Thermal Conductivity-Low CTE SiCp/Al Metal Matrix Composites for Electronic Packaging Applications)

  • 이효수;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.190-194
    • /
    • 2000
  • The fabrication process and thermal properties of 50∼76vo1% SiCp/Al metal matrix composites (MMCs) were investigated. The 50∼76vo1% SiCp/Al MMCs fabricated by pressure infiltration casting process showed that thermal conductivities were 85∼170W/mK and coefficient of thermal expansion (CTE) were ranged 10∼6ppm/K. Specially, the thermal conductivity and CTE of 71vo1%SiCp/Al MMCs were ranged l15∼156W/mK and 6∼7ppm/K, respectively, which showed a improved thermal properties than the conventional electronic packaging materials such as ceramics and metals.

  • PDF

붕규산염 유리를 절연층으로 도포한 정전척의 제조 (Fabrication of Electrostatic Chucks Using Borosilicate Glass Coating as an Insulating Layer)

  • 방재철;이지형
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.390-393
    • /
    • 2001
  • This study demonstrated the feasibility of tape casting method to fabricate soda borosilicate glass-coated stainless steel electrostatic chucks(ESC) for low temperature semiconductor processes. The glass coatings on the stainless steel substrates ranged from $100{\mu}m$ to $150{\mu}m$ thick. The adhesion of the glass coatings was found to be excellent such that it was able to withstand moderate impact tests and temperature cycling to over $300^{\circ}C$ without cracking and delamination. The electrostatic clamping pressure generally followed the theoretical voltage-squared curve except at elevated temperatures and higher applied voltages when deviations were observed to occur. The deviation is due to increased leakage current at higher temperature and applied voltage as the electrical resistivity drops.

  • PDF