• Title/Summary/Keyword: Low power systems

Search Result 2,393, Processing Time 0.028 seconds

Addressing Inter-floor Noise Issues in Apartment Buildings using On-Sensor AI Embedded with TinyML on Ultra-Low-Power Systems

  • Jae-Won Kwak;In-Yeop Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.75-81
    • /
    • 2024
  • In this paper, we proposes a method for real-time processing of inter-floor noise problems by embedding TinyML, which includes a deep learning model, into ultra-low-power systems. The reason this method is feasible is because of lightweight deep learning model technology, which allows even systems with small computing resources to perform inference autonomously. The conventional method proposed to solve inter-floor noise problems was to send data collected from sensors to a server for analysis and processing. However, this centralized processing method has issues with high costs, complexity, and difficulty in real-time processing. In this paper, we address these limitations by employing On-Sensor AI using TinyML. The method presented in this paper is simple to install, cost-effective, and capable of processing problems in real-time.

Energy-Efficient Antenna Selection in Green MIMO Relaying Communication Systems

  • Qian, Kun;Wang, Wen-Qin
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2016
  • In existing literature on multiple-input multiple-output (MIMO) relaying communication systems, antenna selection is often implemented by maximizing the channel capacity or the output single-to-noise ratio (SNR). In this paper, we propose an energy-efficient low-complexity antenna selection scheme for MIMO relaying communication systems. The proposed algorithm is based on beamforming and maximizing the Frobenius norm to jointly optimize the transmit power, number of active antennas, and antenna subsets at the source, relaying and destination. We maximize the energy efficiency between the link of source to relay and the link of relay to destination to obtain the maximum energy efficiency of the system, subject to the SNR constraint. Compared to existing antenna selection methods forMIMO relaying communication systems, simulation results demonstrate that the proposed method can save more power in term of energy efficiency, while having lower computational complexity.

Energy-Efficient Last-Level Cache Management for PCM Memory Systems

  • Bahn, Hyokyung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.188-193
    • /
    • 2022
  • The energy efficiency of memory systems is an important task in designing future computer systems as memory capacity continues to increase to accommodate the growing big data. In this article, we present an energy-efficient last-level cache management policy for future mobile systems. The proposed policy makes use of low-power PCM (phase-change memory) as the main memory medium, and reduces the amount of data written to PCM, thereby saving memory energy consumptions. To do so, the policy keeps track of the modified cache lines within each cache block, and replaces the last-level cache block that incurs the smallest PCM writing upon cache replacement requests. Also, the policy considers the access bit of cache blocks along with the cache line modifications in order not to degrade the cache hit ratio. Simulation experiments using SPEC benchmarks show that the proposed policy reduces the power consumption of PCM memory by 22.7% on average without degrading performances.

EC-RPL to Enhance Node Connectivity in Low-Power and Lossy Networks (저전력 손실 네트워크에서 노드 연결성 향상을 위한 EC-RPL)

  • Jeadam, Jung;Seokwon, Hong;Youngsoo, Kim;Seong-eun, Yoo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.41-49
    • /
    • 2022
  • The Internet Engineering Task Force (IETF) has standardized RPL (IPv6 Routing Protocol for Low-power Lossy Network) as a routing protocol for Low Power and Lossy Networks (LLNs), a low power loss network environment. RPL creates a route through an Objective Function (OF) suitable for the service required by LLNs and builds a Destination Oriented Directed Acyclic Graph (DODAG). Existing studies check the residual energy of each node and select a parent with the highest residual energy to build a DODAG, but the energy exhaustion of the parent can not avoid the network disconnection of the children nodes. Therefore, this paper proposes EC-RPL (Enhanced Connectivity-RPL), in which ta node leaves DODAG in advance when the remaining energy of the node falls below the specified energy threshold. The proposed protocol is implemented in Contiki, an open-source IoT operating system, and its performance is evaluated in Cooja simulator, and the number of control messages is compared using Foren6. Experimental results show that EC-RPL has 6.9% lower latency and 5.8% fewer control messages than the existing RPL, and the packet delivery rate is 1.7% higher.

Power Smoothening Control of Wind Farms Based on Inertial Effect of Wind Turbine Systems

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Kang, Jong-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1096-1103
    • /
    • 2014
  • This paper proposes a novel strategy for attenuating the output power fluctuation of the wind farm (WF) in a range of tens of seconds delivered to the grid, where the kinetic energy caused by the large inertia of the wind turbine systems is utilized. A control scheme of the two-level structure is applied to control the wind farm, which consists of a supervisory control of the wind farm and individual wind turbine controls. The supervisory control generates the output power reference of the wind farm, which is filtered out from the available power extracted from the wind by a low-pass filter (LPF). A lead-lag compensator is used for compensating for the phase delay of the output power reference compared with the available power. By this control strategy, when the reference power is lower than the maximum available power, some of individual wind turbines are operated in the storing mode of the kinetic energy by increasing the turbine speeds. Then, these individual wind turbines release the kinetic power by reducing the turbine speed, when the power command is higher than the available power. In addition, the pitch angle control systems of the wind turbines are also employed to limit the turbine speed not higher than the limitation value during the storing mode of kinetic energy. For coordinating the de-rated operation of the WT and the storing or releasing modes of the kinetic energy, the output power fluctuations are reduced by about 20%. The PSCAD/EMTDC simulations have been carried out for a 10-MW wind farm equipped with the permanent-magnet synchronous generator (PMSG) to verify the validity of the proposed method.

A study on DR image restoration using dual sensor (이중센서를 이용한 DR 영상 개선에 관한 연구)

  • 백승권;이태수;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.725-728
    • /
    • 1988
  • Image restoration technique using dual sensor is presented in this paper. Digital Radiography image (1024xlO24) is obtained by conventional resolution sensor. We also obtain local DR image data by high resolution sensor. Two dimensional maximum entropy power spectrum estimation (2-D ME PSE) is applied to low resolution image and high resolution image for the purpose of the power spectrum estimation of each image. A class of linear algebraic restoration filter, parametric projection filter (PPF), is derived from the power spectrums of each image. It is shown that the noise energy may be considerably reduced through the PPF.

  • PDF

A study on the converter of auxiliary power supply for electric railway vehicles (전기 철도차량용 보조전원장치의 컨버터에 관한 연구)

  • Kim, Jae-Moon;Kim, Yang-Soo;Lee, Jong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.467-468
    • /
    • 2007
  • This paper describes characteristics of converters of auxiliary power supply for electric railway vehicles. Auxiliary power supply is called Static Inverter(SIV) which supplied lamps, air conditioning and heat equipments, control systems, etc. Simulation results shows that line No.1 cheon contains low harmonics compared with those of KTX.

  • PDF

Improved Routing Metrics for Energy Constrained Interconnected Devices in Low-Power and Lossy Networks

  • Hassan, Ali;Alshomrani, Saleh;Altalhi, Abdulrahman;Ahsan, Syed
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2016
  • The routing protocol for low-power and lossy networks (RPL) is an internet protocol based routing protocol developed and standardized by IETF in 2012 to support a wide range of applications for low-power and lossy-networks (LLNs). In LLNs consisting of resource-constrained devices, the energy consumption of battery powered sensing devices during network operations can greatly impact network lifetime. In the case of inefficient route selection, the energy depletion from even a few nodes in the network can damage network integrity and reliability by creating holes in the network. In this paper, a composite energy-aware node metric ($RER_{BDI}$) is proposed for RPL; this metric uses both the residual energy ratio (RER) of the nodes and their battery discharge index. This composite metric helps avoid overburdening power depleted network nodes during packet routing from the source towards the destination oriented directed acyclic graph root node. Additionally, an objective function is defined for RPL, which combines the node metric $RER_{BDI}$ and the expected transmission count (ETX) link quality metric; this helps to improve the overall network packet delivery ratio. The COOJA simulator is used to evaluate the performance of the proposed scheme. The simulations show encouraging results for the proposed scheme in terms of network lifetime, packet delivery ratio and energy consumption, when compared to the most popular schemes for RPL like ETX, hop-count and RER.

Family of Dual-Input Dual-Buck Inverters Based on Dual-Input Switching Cells

  • Yang, Fan;Ge, Hongjuan;Yang, Jingfan;Dang, Runyun;Wu, Hongfei
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1015-1026
    • /
    • 2018
  • A family of dual-DC-input (DI) dual-buck inverters (DBIs) is proposed by employing a DI switching cell as the input of traditional DBIs. Three power ports, i.e. a low voltage DC input port, a high voltage DC input port and an AC output port, are provided by the proposed DI-DBIs. A low voltage DC source, whose voltage is lower than the peak amplitude of the AC side voltage, can be directly connected to the DI-DBI. This supplies power to the AC side in single-stage power conversion. When compared with traditional DBI-based two-stage DC/AC power systems, the conversion stages are reduced, and the power rating and power losses of the front-end Boost converter of the DI-DBI are reduced. In addition, five voltage-levels are generated with the help of the two DC input ports, which is a benefit in terms of reducing the voltage stresses and switching losses of switches. The topology derivation method, operation principles, modulation strategy and characteristics of the proposed inverter are analyzed in-depth. Experimental results are provided to verify the effectiveness and feasibility of the proposed DI-DBIs.

Swarm Intelligence-based Power Allocation and Relay Selection Algorithm for wireless cooperative network

  • Xing, Yaxin;Chen, Yueyun;Lv, Chen;Gong, Zheng;Xu, Ling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1111-1130
    • /
    • 2016
  • Cooperative communications can significantly improve the wireless transmission performance with the help of relay nodes. In cooperative communication networks, relay selection and power allocation are two key issues. In this paper, we propose a relay selection and power allocation scheme RS-PA-PSACO (Relay Selection-Power Allocation-Particle Swarm Ant Colony Optimization) based on PSACO (Particle Swarm Ant Colony Optimization) algorithm. This scheme can effectively reduce the computational complexity and select the optimal relay nodes. As one of the swarm intelligence algorithms, PSACO which combined both PSO (Particle Swarm Optimization) and ACO (Ant Colony Optimization) algorithms is effective to solve non-linear optimization problems through a fast global search at a low cost. The proposed RS-PA-PSACO algorithm can simultaneously obtain the optimal solutions of relay selection and power allocation to minimize the SER (Symbol Error Rate) with a fixed total power constraint both in AF (Amplify and Forward) and DF (Decode and Forward) modes. Simulation results show that the proposed scheme improves the system performance significantly both in reliability and power efficiency at a low complexity.