• Title/Summary/Keyword: Low operating voltage

Search Result 622, Processing Time 0.023 seconds

A Study on Poisoning of the Reforming Catalysts on the Position of Anode in the Direct Internal Reforming Molten Carbonate Fuel Cell (직접 내부개질형 용융탄산염 연료전지의 음극판 위치에 따른 개질 촉매 피독에 관한 연구)

  • Wee, Jung Ho;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.652-659
    • /
    • 1999
  • The trend of poisoning of reforming catalyst along with the position of anodic catalyst bed was studied. Keeping the conditions that steam to carbon ratio was 2.5, operating voltage was 0.75 V, current density was $140mA/cm^2$, the unit cell was operated during 24 hrs at a steady state. And then the cell was stopped, the catalysts packed in the position of inlet, middle and outlet were sampled individually and then the amount of carbon, Li and K poisoned were analysed. After 100 hrs operated, the catalysts at the same positions were analysed at the same manner. The result of this experiment was as followings. After 24 hrs operated, the poisoning amounts of Li and K in the catalyst were 0.27 wt% at inlet, 0.23 wt% at middle and the highest value 1.59 wt% at outlet. After 100 hrs, the amount of poisoning is the highest in the catalyst packed at the inlet of unit cell. The performance simulation of unit cell explained these trends of poisoning catalysts. The simulation told that the catalyst in the region of the inlet of unit cell treated the 90% of initial methane flow rate and the highest electrochemical reaction happened in this region. So the catalysts of this region were the most poisoned with carbon, Li and K and also the rate of poisoning is faster than that of the catalyst at other regions. The temperature at the region of outlet of unit cell was $30^{\circ}C$ higher than that of other regions, so more Li, and K vaporized than at other regions and little reforming reaction at this region made the catalysts poisoning rate low.

  • PDF

Development of Multiwire Proportional Counter for Measurement of Environmental-level Alpha Particles (환경준위 알파입자측정을 위한 다중선 비례계수기 개발(I))

  • Oh, Pil Jae;Park, Tae Soon;Lee, Min Kie;Kim, Kyung Hwa
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.262-269
    • /
    • 1996
  • The muiltiwire proportional counter for the measurement of low-level and environmental $\alpha$ particles emitting nuclides was developed. External dimension of the devloped multiwire proportional counter is $350{\times}290{\times}30mm$ and the sensitivity area is $250{\times}200mm$. The wall material of the detector was selected the stainless steel to prevent the deformation by external impact and to obtain minimum background. The anode and cathode wires were used the stainless steel material of diameter $50{\mu}m$. The spacing of each wires are 10.0mm, 5.0mm and the numbers of total wire are 21, 42 lines, respectively. The multiwire proportional counter was designed that the measurement source is placed within the detector to prevent the wall absorption effect and the efficiency variation by various source heights. The characteristics of the developed detector have been investigated to obtain the plateau, operating voltage, background, counting efficiency, position sensitivity and energy resolution etc. For the $^{241}Am$ nuclide, the calculated LLD(Lower Limit of Detection) is 5.0mBq/L which is lower than 40mBq/L of recommended LLD value by ISO(International Organization for Standardization).

  • PDF

Optical Current Sensors with Improved Reliability using an Integrated-Optic Reflective Interferometer (반사형 간섭계를 이용하여 신뢰성을 향상시킨 광전류센서)

  • Kim, Sung-Moon;Chu, Woo-Sung;Oh, Min-Cheol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.17-23
    • /
    • 2017
  • Optical current sensors are suitable for operation in high voltage and high current environments such as power plants due to they are not affected by electromagnetic interference and have excellent insulation characteristics. However, as they operate in a harsh environment such as large temperature fluctuation and mechanical vibration, high reliability of the sensor is required. Therefore, many groups have been working on enhancing the reliability. In this work, an integrated optical current sensor incorporating polarization-rotated reflection interferometer is proposed. By integrating various optical components on a single chip, the sensor exhibits enhanced stability as well as the solution for low-cost optical sensors. Using this, we performed the characterization for the actual field application. By using a large power source, the current of 0.3 kA~36 kA was applied to the photosensor and the linear operation characteristics were observed. The error of the sensor was within $0{\pm}.5%$. Even when operating for a long time, the error range of the sensor was kept within $0{\pm}.5%$. In addition, the measurement of the frequency response over the range of 60 Hz to 10 kHz has confirmed that the 3-dB frequency band of the proposed OCT is well over 10 kHz.

REPLACEMENT OF A PHOTOMULTIPLIER TUBE IN A 2-INCH THALLIUM-DOPED SODIUM IODIDE GAMMA SPECTROMETER WITH SILICON PHOTOMULTIPLIERS AND A LIGHT GUIDE

  • KIM, CHANKYU;KIM, HYOUNGTAEK;KIM, JONGYUL;LEE, CHAEHUN;YOO, HYUNJUN;KANG, DONG UK;CHO, MINSIK;KIM, MYUNG SOO;LEE, DAEHEE;KIM, YEWON;LIM, KYUNG TAEK;YANG, SHIYOUNG;CHO, GYUSEONG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.479-487
    • /
    • 2015
  • The thallium-doped sodium iodide [NaI(Tl)] scintillation detector is preferred as a gamma spectrometer in many fields because of its general advantages. A silicon photomultiplier (SiPM) has recently been developed and its application area has been expanded as an alternative to photomultiplier tubes (PMTs). It has merits such as a low operating voltage, compact size, cheap production cost, and magnetic resonance compatibility. In this study, an array of SiPMs is used to develop an NaI(Tl) gamma spectrometer. To maintain detection efficiency, a commercial NaI(Tl) $2^{\prime}{\times}2^{\prime}$ scintillator is used, and a light guide is used for the transport and collection of generated photons from the scintillator to the SiPMs without loss. The test light guides were fabricated with polymethyl methacrylate and reflective materials. The gamma spectrometer systems were set up and included light guides. Through a series of measurements, the characteristics of the light guides and the proposed gamma spectrometer were evaluated. Simulation of the light collection was accomplished using the DETECT 97 code (A. Levin, E. Hoskinson, and C. Moison, University of Michigan, USA) to analyze the measurement results. The system, which included SiPMs and the light guide, achieved 14.11% full width at half maximum energy resolution at 662 keV.

Design of a Readout Circuit of Pulse Rate and Pulse Waveform for a U-Health System Using a Dual-Mode ADC (이중 모드 ADC를 이용한 U-Health 시스템용 맥박수와 맥박파형 검출 회로 설계)

  • Shin, Young-San;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.68-73
    • /
    • 2013
  • In this paper, we proposed a readout circuit of pulse waveform and rate for a U-health system to monitor health condition. For long-time operation without replacing or charging a battery, either pulse waveform or pulse rate is selected as the output data of the proposed readout circuit according to health condition of a user. The proposed readout circuit consists of a simple digital logic discriminator and a dual-mode ADC which operates in the ADC mode or in the count mode. Firstly, the readout circuit counts pulse rate for 4 seconds in the count mode using the dual-mode ADC. Health condition is examined after the counted pulse rate is accumulated for 1 minute in the discriminator. If the pulse rate is out of the preset normal range, the dual-mode ADC operates in the ADC mode where pulse waveform is converted into 10-bit digital data with the sampling frequency of 1 kHz. These data are stored in a buffer and transmitted by 620 kbps to an external monitor through a RF transmitter. The data transmission period of the RF transmitter depends on the operation mode. It is generally 1 minute in the normal situation or 1 ms in the emergency situation. The proposed readout circuit was designed with $0.11{\mu}m$ process technology. The chip area is $460{\times}800{\mu}m^2$. According to measurement, the power consumption is $161.8{\mu}W$ in the count mode and $507.3{\mu}W$ in the ADC mode with the operating voltage of 1 V.

HF-Band Magnetic-Field Communication System Using Bias Switching Circuit of Class E Amplifier (E급 증폭기의 바이어스 스위칭 회로를 이용한 HF-대역 자기장 통신 시스템)

  • Son, Yong-Ho;Lee, June;Cho, Sang-Ho;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1087-1093
    • /
    • 2012
  • In this paper, we implemented a HF-band magnetic-field communication system consisting of an amplitude shift keying(ASK) transmitter, a pair of loop antennas, and an ASK receiver. Especially, we suggested a new ASK transmitter architecture, where a drain bias of class E amplifier is switched alternatively between two voltage levels with respect to input data. A maximum 5 W class E amplifier was designed using a low cost IRF510 power MOSFET at the frequency of 6.78 MHz. A measured sensitivity of the designed ASK receiver is -78 dBm, which consists of a log amplifier, a filter, and a comparator. Maximum communication range of magnetic-wave communication system with loop antennas was calculated using magnetic field equations in both near-field and far-field ranges. Also, in order to verify the calculated values, an indoor propagation loss was measured using a pair of loop antennas whose dimensions are $30{\times}30cm$. Maximum operating range is estimated about 35 m in case of transmitter's output power of 1 W and receiver sensitivity of -70 dBm, respectively. Finally, the communication field test using the designed ASK transmitter and receiver was successfully done at the distance of 5 m.

A Study on Fabrication and Performance Evaluation of Wideband 2-Mode HPA for the Satellite Mobile Communications System (이동위성 통신용 광대역 2단 전력제어 HPA의 구현 및 성능평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.517-531
    • /
    • 1999
  • This paper presents the development of the 2-mode variable gain high power amplifier for a transmitter of INMARSAT-M operating at L-band(1626.5-1646.5 MHz). This SSPA(Solid State Power Amplifier) is amplified 42 dBm in high power mode and 36 dBm in low power mode for INMARSAT-M. The allowable error sets +1 dBm of an upper limit and -2 dBm of a lower limit, respectively. To simplify the fabrication process, the whole system is designed by two parts composed of a driving amplifier and a high power amplifier, The HP's MGA-64135 and Motorola's MRF-6401 are used for driving amplifier, and the ERICSSON's PTE-10114 and PTF-10021 are used the high power amplifier. The SSPA was fabricated by the circuits of RF, temperature compensation and 2-mode gain control circuit in aluminum housing. The gain control method was proposed by controlling the voltage for the 2-mode. In addition, It has been experimentally verified that the gain is controlled for single tone signal as well as two tone signals. The realized SSPA has 42 dB and 36 dB for small signal gain within 20 MHz bandwidth, and the VSWR of input and output port is less than 1.5:1 The minimum value of the 1 dB compression point gets 5 dBm for 2-mode variable gain high power amplifier. A typical two tone intermodulation point has 32.5 dBc maximum which is single carrier backed off 3 dB from 1 dB compression point. The maximum output power of 43 dBm was achieved at the 1636.5 MHz. These results reveal a high power of 20 Watt, which was the design target.the design target.

  • PDF

A 0.2V DC/DC Boost Converter with Regulated Output for Thermoelectric Energy Harvesting (열전 에너지 하베스팅을 위한 안정화된 출력을 갖는 0.2V DC/DC 부스트 변환기)

  • Cho, Yong-hwan;Kang, Bo-kyung;Kim, Sun-hui;Yang, Min-Jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.565-568
    • /
    • 2014
  • This paper presents a 0.2V DC/DC boost converter with regulated output for thermoelectric energy harvesting. To use low voltages from a thermoelectric device, a start-up circuit consisting of native NMOS transistors and resistors boosts an internal VDD, and the boosted VDD is used to operate the internal control block. When the VDD reaches a predefined value, a detector circuit makes the start-up block turn off to minimize current consumption. The final boosted VSTO is achieved by alternately operating the sub-boost converter for VDD and the main boost converter for VSTO according to the comparator outputs. When the VSTO reaches 2.4V, a buck converter starts to operate to generate a stabilized output VOUT. Simulation results shows that the designed converter generates a regulated 1.8V output from an input voltage of 0.2V, and its maximum power efficiency is 60%. The chip designed using a $0.35{\mu}m$ CMOS process occupies $1.1mm{\times}1.0mm$ including pads.

  • PDF

Modeling Residual Water in the Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell and Analyzing Performance Changes (고분자 전해질막 연료전지의 기체확산층 내부 잔류수 모델링 및 성능변화해석)

  • Jiwon Jang;Junbom Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Polymer electrolyte membrane fuel cells have the advantage of low operating temperatures and fast startup and response characteristics compared to others. Simulation studies are actively researched because their cost and time benefits. In this study, the resistance of water residual in the gas diffusion layer (GDL) of the unit cell was added to the existing equation to compare the actual data with the model data. The experiments were conducted with a 25 cm2 unit cell, and the samples were separated into stopping times of 0, 10, and 60 minutes following primary impedance measurement, activation, and polarization curve data acquisition. This gives 0, 10, and 60 minutes for the residual water in the GDL to evaporate. Without the rest period, the magnitude of the performance improvement was not significantly different at the same potential and flow rate, but the rest period did improve the performance of the membrane electrode assembly when measuring impedance. By changing the magnitude of the resistance reduction to an overvoltage, the voltage difference between the fuel cell model with and without residual water was compared, and the error rate in the high current density region, which is dominated by concentration losses, was reduced.

Chemical Age Dating of Zircon and Monazite by E1ectron Microprobe (전자현미분석기를 이용한 저어콘 및 모나자이트의 화학적 연대 측정법)

  • 이석훈
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.179-189
    • /
    • 2001
  • The determination of trace concentration of U, Th and Pb was carried out for chemical dating of zircon and monazite by electron microprobe. Detection limit and error range should be considered to measure characteristic X-rays of M-line from those minerals, which are low in the ionization of atom and low peak intensity in the spectrum. The element of U, Th and Pb were simultaneously measured with 3 spectrometers equipped with PET crystal to reduce a total counting time and error due to drift of instrumental operating condition. Detection limit could be improved from increase of the peak/background ratio through adjusting pulse height analyzer about 1000 mv baseline. Under permissible maximum analytical conditions, theoretical detection limit of U, Th and Pb is down to 30 ppm (99% confidence level). The analytical result was maintained at a relative error $\pm$10% ($2{\sigma}$) in 800 ppm Pb, $\pm$5% ($2{\sigma}$) in 2330 ppm U and $\pm$10% ($2{\sigma}$) in dating from a single measurement of zircon at 15 keV and 100 nA. However, for the precise dating of zircon and monazite, if it is considered a 3 $\mu\textrm{m}$ spatial resolution, <100 ppm ($3{\sigma}$) detection limit and <$\pm$10% ($2{\sigma}$) relative error, optimum analytical conditions are given as 15~20 keV accelerating voltage, 100~200 nA beam current and 300~1200 sec total counting time. To reduce material damage by high current, there is need to be up to 3~5 $\mu\textrm{m}$ of electron beam diameter, or to use arithmetic average of multiple measuring at a shorter counting time. A younger or relatively low concentration rocks can be dated chemically by lower detection limit and improved precision resulted from increase of current and measuring time.

  • PDF