DOI QR코드

DOI QR Code

반사형 간섭계를 이용하여 신뢰성을 향상시킨 광전류센서

Optical Current Sensors with Improved Reliability using an Integrated-Optic Reflective Interferometer

  • 투고 : 2016.11.11
  • 심사 : 2017.04.11
  • 발행 : 2017.05.25

초록

광전류센서는 전자기파 간섭에 영향을 받지 않으며 뛰어난 절연특성을 가지고 있어 발전소와 같은 고전압 대전류 환경에서 운용하기에 적합하다. 하지만, 온도변화와 진동과 같은 외부의 환경변화가 큰 상황에서 운용해야 하므로 센서의 높은 신뢰성이 요구된다. 그 때문에 안정성과 관련된 연구가 활발히 이루어지고 있다. 본 논문에서는 폴리머 광집적회로를 이용한 편광회전반사간섭계를 이용하여 신뢰성을 향상시킨 광전류센서를 제안한다. 여러 가지 독립적인 광소자들을 하나의 칩 상에 집적하여 안정성을 향상시키고 대량생산을 통한 저가격의 광전류센서 제작 가능성을 높였으며, 이를 이용하여 실제 현장에 적용하기 위한 특성평가를 수행하였다. 대전력 공급원을 이용하여 0.3 kA~36 kA 범위의 전류를 광센서에 인가하였을 때 선형적인 동작특성을 볼 수 있었고 센서의 오차는 $0{\pm}.5%$ 이내로 나타났다. 장시간 동작시에도 센서의 오차범위는 $0{\pm}.5%$ 이내로 유지되었다. 또한, 60 Hz~10 kHz 범위에 걸친 주파수 응답 특성 측정 결과 제안된 OCT의 3-dB 주파수 대역은 10kHz를 훨씬 넘는 것으로 확인되었다.

Optical current sensors are suitable for operation in high voltage and high current environments such as power plants due to they are not affected by electromagnetic interference and have excellent insulation characteristics. However, as they operate in a harsh environment such as large temperature fluctuation and mechanical vibration, high reliability of the sensor is required. Therefore, many groups have been working on enhancing the reliability. In this work, an integrated optical current sensor incorporating polarization-rotated reflection interferometer is proposed. By integrating various optical components on a single chip, the sensor exhibits enhanced stability as well as the solution for low-cost optical sensors. Using this, we performed the characterization for the actual field application. By using a large power source, the current of 0.3 kA~36 kA was applied to the photosensor and the linear operation characteristics were observed. The error of the sensor was within $0{\pm}.5%$. Even when operating for a long time, the error range of the sensor was kept within $0{\pm}.5%$. In addition, the measurement of the frequency response over the range of 60 Hz to 10 kHz has confirmed that the 3-dB frequency band of the proposed OCT is well over 10 kHz.

키워드

참고문헌

  1. R. C. d. S. B. Allil and M. M. Werneck, "Optical high-voltage sensor based on fiber bragg grating and PZT piezoelectric ceramics." IEEE Trans. Instrumentation and Measurement, Vol. 60, No. 6, pp. 2118-2125, June 2011. https://doi.org/10.1109/TIM.2011.2115470
  2. P. P. Chavez, N. A. F. Jaeger, and F. Rahmatian, "Accurate voltage measurement by the quadrature method." IEEE Trans. Power Delivery, Vol. 18, No. 1, pp. 14-19, Jan 2003. https://doi.org/10.1109/TPWRD.2002.801428
  3. P. E. Bartley and H William, "Analysis of transformer failures." in Proc. of International Association of Engineering Insurers 36th Annual Conference, Stockholm, Sweden, September 2003.
  4. K. Bohnert, P. Gabus, J. Nehring, and H. Brandle, "Temperature and vibration insensitive fiber-optic current sensor," J. Lightwave. Technol., Vol. 20, No. 2, pp. 267-276, February 2002. https://doi.org/10.1109/50.983241
  5. F. Rahmatian and J. N. Blake, "Applications of high-voltage fiber optic current sensors", in Proc. of IEEE PES General Meeting, pp. 1129-1135 Montreal, Quebec, July 2006.
  6. N.-Y. Jang, P.-S. Chio, J.-J. Eun, H.-S. Park. "A Study on the Fabrication of Polarimetric Fiber Optic Current Sensor." The Institute of Electronics Engineers of Korea - Semiconductor and Devices, Vol. 41, No. 6, pp. 33-41, Jun 2004.
  7. K. Bohnert, P. Gabus, and H. Brandle, "Fiber-optic current and voltage sensors for high-voltage substations." In Proc. of the 16th International Conf. on Optical Fiber Sensors, Vol. 1317, pp. 752-754, Nara, Japan, October 2003.
  8. K. Bohnert, P. Gabus, J. Kostovic, and H. Brandle, "Optical fiber sensors for the electric power industry." Optics and Lasers in Engineering, Vol. 43, No. 3, pp. 511-526, July 2005. https://doi.org/10.1016/j.optlaseng.2004.02.008
  9. M.-R. Lee, D.-I. Jang, S.-H. Yoon, Y.-H. Lee, B.-Y. Kim, J.-S. Park, "Polarimetric Current Sensor Using Orthogonally-Polarized Dual-Frequency Fiber Laser." The Institute of Electronics Engineers of Korea, pp. 205-206, January, 1997.
  10. M. Hino, S. Hase, K. Ajiki, and M. Akagi, "Optical fiber current transformer applications on railway electric power supply systems," QR of RTRI, Vol. 45, No. 2, pp. 59-63, May 2004. https://doi.org/10.2219/rtriqr.45.59
  11. K. Kurosawa, "Development of fiber-optic current sensing technique and its applications in electric power systems," Photonic Sens Vol. 4, No. 1, pp. 12-20, March 2014. https://doi.org/10.1007/s13320-013-0138-z
  12. R. Kondo and K Kurosawa. "A method for improving temperature dependence of an optical fiber current sensor." IEEJ Transactions on Power and Energy, Vol. 130, No. 4, pp. 414-420 April 2010. https://doi.org/10.1541/ieejpes.130.414
  13. G. Frosio and R. Dandliker, "Reciprocal reflection interferometer for a fiber-optic Faraday current sensor," Appl. Opt., Vol. 33, No. 25, pp. 6111-6122, September 1994. https://doi.org/10.1364/AO.33.006111
  14. G. Mueller, A. Frank, K. Bohnert, X. Gu "Temperature compensated fiber-optic current sensor." U.S. Patent No. 2015011593, April 2015.
  15. M.-C. Oh, W.-S. Chu, K.-J. Kim, and J.-W. Kim, "Polymer waveguide integrated-optic current transducers," Opt. Express, Vol. 19, No. 10, pp. 9392-9400, April 2011. https://doi.org/10.1364/OE.19.009392
  16. W.-S. Chu, S.-M. Kim, and M.-C. Oh, "Integrated optic current transducers incorporating photonic crystal fiber for reduced temperature dependence," Opt. Express, Vol. 23, No. 17, pp. 22816-22825, August 2015. https://doi.org/10.1364/OE.23.022816
  17. W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, "Polarization converting waveguide devices incorporating UV-curable reactive mesogen," J. Opt. Soc. Korea, Vol. 15, No. 3, pp. 289-293, September 2011. https://doi.org/10.3807/JOSK.2011.15.3.289