Chemical Age Dating of Zircon and Monazite by E1ectron Microprobe

전자현미분석기를 이용한 저어콘 및 모나자이트의 화학적 연대 측정법

  • 이석훈 (한국기초과학지원연구원 전자현미경팀)
  • Published : 2001.12.01

Abstract

The determination of trace concentration of U, Th and Pb was carried out for chemical dating of zircon and monazite by electron microprobe. Detection limit and error range should be considered to measure characteristic X-rays of M-line from those minerals, which are low in the ionization of atom and low peak intensity in the spectrum. The element of U, Th and Pb were simultaneously measured with 3 spectrometers equipped with PET crystal to reduce a total counting time and error due to drift of instrumental operating condition. Detection limit could be improved from increase of the peak/background ratio through adjusting pulse height analyzer about 1000 mv baseline. Under permissible maximum analytical conditions, theoretical detection limit of U, Th and Pb is down to 30 ppm (99% confidence level). The analytical result was maintained at a relative error $\pm$10% ($2{\sigma}$) in 800 ppm Pb, $\pm$5% ($2{\sigma}$) in 2330 ppm U and $\pm$10% ($2{\sigma}$) in dating from a single measurement of zircon at 15 keV and 100 nA. However, for the precise dating of zircon and monazite, if it is considered a 3 $\mu\textrm{m}$ spatial resolution, <100 ppm ($3{\sigma}$) detection limit and <$\pm$10% ($2{\sigma}$) relative error, optimum analytical conditions are given as 15~20 keV accelerating voltage, 100~200 nA beam current and 300~1200 sec total counting time. To reduce material damage by high current, there is need to be up to 3~5 $\mu\textrm{m}$ of electron beam diameter, or to use arithmetic average of multiple measuring at a shorter counting time. A younger or relatively low concentration rocks can be dated chemically by lower detection limit and improved precision resulted from increase of current and measuring time.

전자현미분석 기를 이용한 저어콘 및 모나자이트의 화학적 연대측정은 미량의 U, Th 및 Pb의 정량분석을 통해 이루어지는데, 측정에 이용되는 M-line의 특성 X-선은 발생효율이 낮고 피크강도가 작아 측정하한과 오차범위가 고려된 분석조건이 설정 되어야한다. 총 분석시간을 줄이고, 측정조건의 변위에 따른 오차를 감소시키고자 PET결정을 갖춘 3개의 분광기를 이용하여 U, Th 및 Pb를 동시에 측정하였고, 파고분석기를 이용하여 피크/배경 비율을 증가시켜 측정하한을 낮추었다 최적 분석조건하에서 U, Th 및 Pb에 대한 이론적 값인 측정하한을 30 ppm (99%유의수준)까지 낮출 수 있었고. 저어콘의 단일측정 시 800 ppd의 Pb농도에서 $\pm$10% ($2{\sigma}$), 2330 ppm의 U에서 $\pm$5% ($2{\sigma}$) 그리고 측정된 연대에서 $\pm$10% ($2{\sigma}$)이내의 상대오차범위에서 분석결과를 얻었다. 저어콘 및 모나자이트의 연대측정을 수행하는데 있어, 3 $\mu\textrm{m}$ 이하의 공간분해능, 100 ppm ($3{\sigma}$) 이하의 측정하한과 $\pm$10% ($2{\sigma}$) 이하의 분석오차를 고려한 가속전압은 15~20 keV, 빔 전류는 100~200 nA, 그리고 총 측정시간을 300~l200초 (피크와 배경위치에서 각각 동일한 시간으로 측정)로 설정하여 보다 정밀하고 정확한 분석자료를 얻을 수 있었다. 높은 전류에 따른 시료의 손상을 줄이기 위해선 전자빔 직경을 3~5 $\mu\textrm{m}$로 증가시키거나 보다 짧은 시간동안의 측정을 반복하여 그 평균값을 이용하는 것이 필요하다. 빔 전류를 증가시키거나 분석시간을 늘려 측정하한을 낮추고 정밀도를 향상시킴으로서 보다 젊은 시기의 암석이나 상대적으로 U, Th 및 Pb의 함량이 적은 광물의 연대측정에 이용할 수 있다.

Keywords

References

  1. 지질학회지 v.29 태백산지역의 고기화강암 및 화강편마암류에 대한 납 동위원소 연구 박계헌;정창식;이광식;장호완
  2. Am. Mineral. v.60 Microprobe analysis of REE minerals using empirical correction factors Amli, R.;Griffin, W. L.
  3. Microprobe Analysis Anderson, C. A.(Eds.)
  4. Chem. Geol. v.83 Age dating of individual grains of uraninite in rocks from electron probe analyses Bowels, J. F. W.
  5. Chem. Geol. v.146 Electron microprobe dating of monazites from high grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India Braun, I.;Montel, J. M.;Nicollet, C.
  6. Advances in electronics and electron physics v.13 Castaing R.
  7. Tectonophysics Two tectonometamorphic events recorded in U-Pb isotopic system of black slated from the Ogcheon belt, South Korea Cheong, C.-S.;Jeong, G. Y.;Kim, H.;Lee, S.-H.;Choi, M.-S.
  8. Geochim. Cosmochim. Acta v.62 Geochronology of polygenetic monazites constrained by in situ electron-microprobe Th-U total lead determination-implications for lead behavior in monazite Cocherie, A.
  9. Chem. Geol. v.157 An electron microprobe study of the U-Th-Pb systematics of metamorphosed monazite: the role of Pb diffusion versus overgrowth and recrystallization Crowley, I. L.;Ghent, E. D.
  10. Am. Miner. v.84 Trace element analyses with the electron microprobe: New data and perspectives Fialine, M.;Remy, H.;Richard, C.;Wagner, C.
  11. Chem. Geol. v.163 Improved U-Th-total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U-Th-Pb discordance in zircon Geisler, T.;Schleicher, H.
  12. Scanning electron microscopy and X-ray microanalysis: A text for biologists, materials scientists, and geologists.(2nd Ed.) Goldstein, J. I.;Newbury, D. E.;Echlin, P.;Joy, D. C.;Roming, A. D.;Lyman, C. E.;Fiori, C.;Lifshin, E.
  13. Phy. Rev. v.4C Precision measurements of half-living and specific activities of $^{235}$U and $^{238}U$ Jaffey, I. H.;Flynn, K. F.;Glendenin, L. E.;Bently, W. C.;Essling, A. M.
  14. J. Phys. D: Appl. Phys. v.5 Penetration and energy-loss theory of electrons in solid targets Kanaya, K.;Okayama, S.
  15. Microprobe techniques in the earth sciences Microanalysis from 1950 to the 1990s Long, J. V. P.;Potts, P. J.(ed.);Bowles, J. F. W.(ed.);Reed, S. J. B.(ed);Cave. M. R.(ed.)
  16. Chem. Geol. v.83 Electron microprobe determination of minor and trace transition elements in silicate minerals: A method and its application to mineral zonning in the peridotite nodule PHN 1611 Merlet, C.;Bodinier, J.-L.
  17. Chem. Geol. v.131 Electron microprobe dating of monazite Montel J.-M.;Foret, S.;Veschambre, M.;Nicollet, C.;Provost, A.
  18. Rech. Aerosp. v.3 A new model for quantitative X-ray microanalysis: Part Ⅰ. Application to the analysis of homogeneous samples Pouchou, J. L.;Pichoir, F.
  19. Advanced in electron microprobe trace-element analysis Robinson, B. W.;Graham, J.
  20. Geochem. J. v.25 Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragenesis in the south Katakami terrane, northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime Suzuki, K.;Adachi, M.
  21. J. Earth Sci. v.38 The chemical Th-U-total Pb isochron ages of zircon and monazite from the Gray granite of the Hida Terrane, Japan Suzuki, K.;Adachi, M.
  22. Tectonophysics v.235 Middle precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogo Island, Japan: their origin and implications for the correlation of basement gneiss of Southwest Japan and Korea Suzuki, K.;Adachi, M.
  23. Earth Plan. Sci. Lett. v.128 Electron microprobe observation of Pb diffusion in metamorphosed detrital monazites Suzuki, K.;Adachi, M.;Kajizuka, I.