• Title/Summary/Keyword: Low molecular water-soluble chitosan

Search Result 25, Processing Time 0.031 seconds

PREPARATION OF MULTIFUNCTIONAL LOW MOLECULAR WEIGHT CHITOSAN AND ITS APPLICATION IN COSMETICS.

  • Ryu, Chang-Suk;Kim, Hyung-Bae;Kim, Jeong-Ha;Jo, Byoung-Kee;Suh, Sang-Bong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.89-95
    • /
    • 1998
  • The aim of this study is to elucidate the anti-microbial activity and anti-oxidative activity of water-soluble chitosan with a molecular weight of 5,000-200,000. Water-soluble chitosans have demonstrated a regular anti-microbial activity on the tested strians by the paper disk method. In the MIC (Minimum Inhibitory Concentration) test, CC-01 (MW=5,000) with the lower MW showed the higher MIC value than the higher MW chitosan. The MW of chitosan increase, the MIC decreases. MICs of 4 chitosans(CC-02∼CC-05) against S. aureusTCC 65389, E coli ATCC 8739, p. aeruginosa, ATCC 9027 and C. albicans ,ATCC 10231 were 7.0-39.O$\mu\textrm{m}$, whereas MICs of chitosans against A. niger were over 2.OmM. Formula containing chitosan showed higher anti-microbial activities than the formula made with the chemical preservatives(Methylparaben 0.2% and Imidazolidinyl Urea 0.3%). Among 5 water-soluble chitosans, CC-03(MW=92,163) showed the most potent anti-oxidative activity (IC$\sub$50/ : 0.2mM). In conclusion, the water-soluble low molecular weight chitosan could be served as natural preservatives and antioxidant in cosmetics.

  • PDF

Characterization and Modification of Low Molecular Water-Soluble Chitosan for Pharmaceutical Application

  • Jang, Mi-Kyeong;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1303-1307
    • /
    • 2003
  • The low molecular water-soluble chitosan nanoparticles (LMWSC-NPs) were prepared, which was modified with hydrophilic and hydrophobic moieties to evaluate the potential for pharmaceutics application. The synthesis of LMWSC-NPs was identified by FT-IR and $^1H$-NMR spectra. Also, we measured the photon correlation spectroscopy (PCS), transmission electron microscope (TEM) and atomic force microscope (AFM) to investigate the characteristics and morphology of the LMWSC-NPs. At the PCS measurement, the more increase the number of substitutive group, the more decrease the positive charge of LMWSC-NP surface. From the results of TEM and AFM, spherical morphologies were observed, and their sizes were 30-150 nm. Resultantly, LMWSC-NPs prepared in this experiment will be expected as a suitable device for the drug targeting system.

Preparation and Characterization of Low Molecular Weight Water Soluble Chitosan Gene Carrier Fractioned according to Molecular Weight (저분자량 수용성 키토산이 분급화된 유전자 전달체의 제조 및 특성)

  • Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.555-561
    • /
    • 2007
  • To obtain low molecular weight water soluble chitosan (LMWSC) with various molecular weights, chitosan oligosaccharides (COS) with lactic acid was separated by using ultrafilteration technique and LMWSC with a free amine group was prepared by the novel salts-removal method. The characterization of LMWSC removed the lactic acid and degree of deacetylation (DDA) were identified by FT-IR and $^1H-NMR$ spectra. Polydispersity index (PDI) was $1.278{\sim}1.499$, which indicates a relatively molecular weight distribution. To identify the potential as a gene carrier, we confirmed the transfection efficiency of COS fractioned according to molecular weight successfully and the salt-removed LMWSC using 293T cell. Also, LMWSC derivatives prepared for improvement transfection efficiency were evaluated using Balb/C mice.

Antibacterial Activity of Low Molecular Weight Water-Soluble Chitosan (저분자량 수용성 키토산의 항균 활성에 관한 연구)

  • Park, Yoon-Kyung;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.419-423
    • /
    • 2011
  • Chitosan is a natural polymer derived from chitin that has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. In addition, water-soluble chitosan has been used to enhance the stability of chitosan in water and reduce cytotoxic activity induced by acetic acid. In this study, the antibiotic activity and mechanism of low molecular weight water-soluble chitosan (LMWSC; MW1, MW3, MW5, and MW10) were examined in pathogenic bacteria cells and vesicles containing bacterial membrane lipids. MW10 displayed potent antibacterial activity against pathogenic bacteria strains and no cytotoxicity against mammalian cells. In addition, the degree of calcein leakage was examined as a function of lipid composition (PE/PG=7/3 w/w). The results of these experiments demonstrated that MW10 promoted leakage in negatively-charged membranes. Furthermore, confocal microscopy revealed that MW10 was located in the plasma membrane.

Physicochemical and Sensory Properties of Water Soluble Chitosan (수용성 Chitosan의 이화학적 및 관능적특성)

  • Kim, Dong-Ho;Lee, Chan;Kim, Kwang-Ok;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.83-90
    • /
    • 1999
  • Although the chitosan has many functional properties due to its cationic amino groups, the application of chitosan in foods is limited by its poor water solubility, bitter taste and astringency. This study was conducted to investigate physicochemical and sensory properties of chitosan hydrolysates in various molecular weights obtained by ultrafiltration after enzymatic hydrolysis. As molecular weight decreased, the solubility of chitosan hydrolysates increased, while the viscosity and emulsion stability decreased. High molecular weight chitosan hydrolysates (>30 kDa) exhibited 800% of fat binding capacity, while low molecular weight ones $(3{\sim}30\;kDa)$ showed 500% of fat binding capacity. Water soluble chitosan hydrolysates exhibited no color differences. Freeze-thaw stability of chitosan hydrolysates was good, without variations among fractions. Cholesterol binding capacity of chitosan hydrolysates was changed from 24% to 36% with increasing molecular weights. From sensory evaluation of chitosan hydrolysates, it was found that bitterness, astringency, chemical flavor and fish flavor of chitosan hydrolysates were very weak.

  • PDF

Novel Synthesis of Sulfated Chitosan Derivatives and its Anti-HIV-1 Activity (황산화 키토산 유도체의 합성과 항에이즈활성)

  • Han Sang-Mun
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.21-34
    • /
    • 2006
  • To investigate anti-HIV-1 activity of water soluble chitosans, sulfated chitosan derivatives were prepared in mild condition. Various sulfated chitosan derivatives (N-3,6-O-S-chitosan, N-desulfated 3,6-O-S-chitosan, 3,6-O-S-chitin, and 3,6-O-sulfated-N-(o-carboxybenzoyl) chitosan) were synthesized with sulfurtrioxidepyridene complex in pyridine solvent. Characterization of the sulfated chitosan derivatives was carried out by $^{13}C$ NMR and IR spectroscopies. To observe ionic reaction properties, pKas of the sulfated chitosan derivatives and chitosan of low molecular weight were estimated by potentiometric titration. The sulfated chitosan derivatives had high water solubility, pKas (pKa : 7.7) of N-3,6-O-S-chitosan and N-desulfated 3,6-O-S-chitosan were increased than pKa of water insoluble chitosan (pKa : 6.2), These results suggest the participation of electrostatic interaction of amino and sulfate groups on the sulfated chitosans. Anti-HIV-1 drugs, such as AZT, ddC, and ddI for anti-HIV activity had higher selective index compared with SCB-chitosan but N-3,6-O-S-chitosan has shown higher selective index compared with ddC and ddI as HIV drugs.. These results suggest that sulfated chitosan derivatives were expected as an anti-HIV drug with differential driving force mechanism against some nucleoside analogs drug in the future.

The Synthesis of Artery Wall Targeted Gene Carrier Using Low Molecular Water-Soluble Chitosan (저분자량 수용성 키토산을 이용한 동맥 벽 표적성 유전자 전달체의 합성)

  • Choi Chang-Yong;Jang Mi-Kyeong;Nah Jae-Woon
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.279-285
    • /
    • 2006
  • Non-viral gene carriers continue to attract a great deal of interest due to advantageous safety profile. Among the non-viral gene carriers, cationic liposomes or synthetic gene carriers are efficient DNA carriers in vitro. but their in vivo applications are greatly hampered because of low biocompatibility. On the other hand, chitosan, a natural cationic polysaccharide, is a candidate non-viral vector for gene delivery because of its low cytotoxicity and high positive charges. In this work, targeted gene carrier was synthesized to target artery wall cells using low molecular water-soluble chitosan (LMWSC). The molecular weight $(M_W)$ and degree of de acetylation (DDA) of LMWSC were measured by relative viscometer and Kina titration. respectively. The structure of LMWSC was analyzed by measuring FTIR, $^1H-NMR,\;and\;^{13}C-NMR$. AWBP-PEG-g-LMWSC was synthesized by conjugation of the artery wall binding peptide (AWBP), a specific targeting peptide, to the end of pegylated LMWSC as a gene carrier to target artery wall cells. The synthesized AWBP-PEG-g-LMWSC were analyzed by measuring FTIR, $^1H-NMR$, zeta -potentiometer, and atomic force microscopy (AFM).

The Physico-chemical and Sensory Properties of Milk with Water Soluble Chitosan (수용성 Chitosan을 첨가한 우유의 이화학적 및 관능적특성)

  • Lee, Jae-Won;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.806-813
    • /
    • 2000
  • Attempts were made to evaluate possibilities of adding water soluble chitosan to milk for improving functionality of milk, and physico-chemical and sensory properties of chitosan added milk were studied. pH and acidity of milk with ethyl alcohol washed chitosan were close to those of control. Color and consistency of chitosan added milk were better with chitosan of lower molecular weight than with high molecular weight. Chitosan of high molecular weight resulted in increased consistency and browning of milk. Milk with less than 1.0% chitosan could be sterilized at $73^{\circ}C$ for 15 sec. with minimum protein coagulation and increase of consistency. Low molecular weight chitosan$(MW\;0.2{\sim}3\;kDa)$ accelerated the growth of Bifidobacterium bifidum, showing 10 times more cell population after 32 hrs incubation. Sensory tests showed that adding chitosan to the regular city milk resulted in significant difference in color and chemical off-flavor(p<0.05). When chitosan was added to coffee milk, there was no significant difference in sensory quality from control. The storage test showed that pH, acidity, consistency and color of coffee milk with 0.5% chitosan did not change markedly during 30 days storage at 0 and $5^{\circ}C$, but changed rapidly after 16days storage at $10^{\circ}C$. Bacterial counts increased when storage temperature was high, and the growth of bacteria was delayed in coffee milk with chitosan.

  • PDF

All-trans Retinoic Acid-Associated Low Molecular Weight Water-Soluble Chitosan N anoparticles Based on Ion Complex

  • Kim Dong-Gon;Choi Changyong;Jeong Young-Il;Jang Mi-Kyeong;Nah Jae-Woon;Kang Seong-Koo;Bang Moon-Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.66-72
    • /
    • 2006
  • The purpose of this study is to develop novel nanoparticles based on polyion complex formation between low molecular weight water-soluble chitosan (LMWSC) and all-trans retinoic acid (atRA). LMWSC nanoparticles encapsulating atRA based on polyion complex were prepared by mixing of atRA into LMWSC aqueous solution using ultrasonication. In FTIR spectra, the carbonyl group of atRA at 1690 $cm^{-1}$ disappeared or decreased when ion complexes were formed between LMWSC and atRA. In ${1}^H$ NMR spectra, specific peaks of atRA disappeared when atRA-encapsulated LMWSC (RAC) nanoparticles were reconstituted into $D_{2}O$ while specific peaks both of atRA and LMWSC appeared in $D_{2}O$/DMSO (1/3, v/v) mixture. XRD patterns also showed that the crystal peaks of atRA were disappeared by encapsulation into LMWSC nanoparticles. LMWSC nanoparticles encapsulating atRA have spherical shapes with particle size below 200 nm. The mechanism of encapsulation of atRA into LMWSC nanoparticles was thought to be an ion complex formation between LMWSC and atRA. LMWSC nanoparticles showed high atRA loading efficiency over 90$\%$ (w/w). AtRA was continuously released from nanoparticles over 10 days. In in vitro cell cytotoxicity test, free atRA showed higher cytotoxic effect against CT 26 colon carcinoma cell line on 1 day. However, RAC nanoparticles showed similar cytotoxicity against CT 26 cells on 2 day. These results suggest the potential for the introduction of LMWSC nanoparticles into various biomedical fields such as drug delivery.