• Title/Summary/Keyword: Low level irradiation

Search Result 177, Processing Time 0.028 seconds

A Study on the Characterization on Some Semiconuctor Materials by Neutron Activation Analysis. Characterization of Semiconductor Silicon

  • Lee Chul;Kwun Oh Cheun;Kim Ho Kun;Lee Jong Du;Chung Koo Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.30-32
    • /
    • 1989
  • Traces of nine elements, gold, arsenic, cobalt, chromium, copper, europium, hafnium, sodium and antimony in commercially available silicon crystals were determined by the instrumental neutron activation analysis using the single comparator method. The values of the concentrations of these elements in both single and polycrystals were found to decrease significantly to a low limiting level by simply washing and etching surface contaminants having been introduced during various steps of sample preparation and irradiation. However, the chromium levels in polycrystals were not easily decreased, these depending upon the cutting tools employed. The Sb-doped content in each semiconductor has been compared with the associated quantities such as the concentration and the conductivity range given by the sample donor. Uncertainty in the sodium analysis due to the fission neutron reaction by silicon itself was discussed.

Photobiomodulation Therapy in Recovery of Peripheral Facial Nerve Damage

  • Choi, Ji Eun
    • Medical Lasers
    • /
    • v.9 no.2
    • /
    • pp.89-94
    • /
    • 2020
  • Photobiomodulation (PBM) therapy has been investigated to enhance and accelerate the recovery of injured peripheral nerves. Based on the wide range of benefits of PBM therapy and its clinical relevance, this study reviewed the efficacy of PBM in injured facial nerves. The search was performed in the PubMed database to find relevant articles published over the last 10 years. Four animal studies, two randomized controlled studies, one case series, and five case reports were reviewed. Despite the various parameters, functional analysis showed that PBM therapy using near-infrared irradiation has beneficial effects on the recovery of the acute phase of the damaged facial nerve, especially when related to faster functional improvement. There were no reported adverse effects of PBM therapy.

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (I) -Fabrication of SiOx(≤2) Plates Using ion Implantation and Their Structural, Compositional Analysis- (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (I) -이온 주입법을 이용한 SiOx(≤2) 플레이트 제작과 구조 화학적 분석-)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.397-404
    • /
    • 2006
  • Effects of surface defect distribution on flame instability during flame-surface interaction are experimentally investigated. To examine chemical quenching phenomenon which is caused by radical adsorption and recombination processes on the surface, thermally grown silicon oxide plates with well-defined defect density were prepared. ion implantation technique was used to control the number of defects, i.e. oxygen vacancies. In an attempt to preferentially remove oxygen atoms from silicon dioxide surface, argon ions with low energy level from 3keV to 5keV were irradiated at the incident angle of $60^{\circ}$. Compositional and structural modification of $SiO_2$ induced by low-energy $Ar^+$ ion irradiation has been characterized by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). It has been found that as the ion energy is increased, the number of structural defect is also increased and non-stoichiometric condition of $SiO_x({\le}2)$ is enhanced.

Induction of micronuclei in human, rabbit and dog lymphocytes irradiated in vitro with gamma radiation (사람, 토끼 및 개 유래 말초혈액 림프구의 미소핵을 이용한 방사선 피폭의 생물학적 선량측정)

  • Ryu, Si-yun;Kang, Bit-na;Kim, Ho-jun;Kim, Tae-hwan;Jeong, Kyu-sik;Kim, Se-ra;Lee, Hae-june;Kim, Sung-ho;An, Mi-Young
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The frequencies of gamma-ray-induced micronuclei (MN) in cytokinesis-blocked (CB) lymphocytes at several doses were measured in three donors of three species (human, rabbit, dog). Measurements performed after irradiation showed a dose-related increases in MN frequency in each of the donors studied. When analysed by linear-quadratic model the line of best fit was : human : $y=0.1184D+0.01867D^2+0.01$, rabbit : $y=0.0387D+0.00528D^2+0.01$ (y = number of MN/CB cells and D = irradiation dose in Gy). The relative sensitivity of rabbit lymphocytes compared with human lymphocytes was estimated by best fitting linear-quadratic model based on the radiation-induced MN data over the range from 0 Gy to 4 Gy. In the case of MN frequency with 0.2, the relative sensitivities of rabbit lymphocytes was 0.39. These data indicate that the induction of MN in rabbit CB cells following irradiation was much less sensitive to the MN induction effects of gamma-irradiation than those from human. The MN assay with dog lymphocytes was very difficult and time-consumed because the dog PHA-stimulated lymphocytes yielded cultures with very low level of CB cells formation in the condition of this experiment. Our in vitro radiobiological study confirmed that the cytogenetic response obtained in blood from rabbit can be utilized for application in environmental studies.

The Relative Effectiveness of Various Radiation Sources on the Resistivity Change in n-Type Silicon

  • Jung, Wun
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1969
  • Resistivity changes of n-type float-zone silicon crystals with 6.4$\times$10$^{14}$ to 1.25$\times$10$^{17}$ phosphorus atoms/㎤ due to irradiation by (1) 1 MeV electrons, (2) two types of research reactors, and (3) $Co^{60}$ ${\gamma}$-ray sources were investigated. The results were analyzed on the basis of a simple exponential formula derived by Buehler. While the formula gave a fair fit in the low fluence range in most cases, the deviation was quite appreciable in the case of 1 MeV electron irradiation, and a linear change gave better fit in some cases. The large change in the carrier removal rate in electron-irradiated samples in the high fluence range was analyzed in detail in terms of the Fermi level cross-over of the defect levels. Based on the damage constants evaluated from the initial portion of data where the formula was applicable, the relative effectiveness of various radiation sources in causing the resistivity change in n-type silicon was compared. The TRIGA Mark II reactor neutrons, for example, were found to be about 40 times more effective than 1 MeV electrons. The dependence of the damage constant on the initial carrier concentration was also examined. The physical basis of the exponential law and the effect of the Fermi level cross-over of the defect levels on the resistivity change in the high fluence ranges are discussed.

  • PDF

DOSE AND DOSE RATE EFFECTS OF IRRADIATION ON BLOOD COUNT AND CYTOKINE LEVEL IN BALB/c MICE

  • Son, Yeonghoon;Jung, Dong Hyuk;Kim, Sung Dae;Lee, Chang Geun;Yang, Kwangmo;Kim, Joong Sun
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.179-184
    • /
    • 2013
  • The biological effects of radiation are dependent on the dose rate and dose of radiation. In this study, effects of dose and dose rate using whole body radiation on plasma cytokines and blood count from male BALB/c mice were evaluated. We examined the blood and cytokine changes in mice exposed to a low (3.49m Gy $h^{-1}$) and high (2.6 Gy $min^{-1}$) dose rate of radiation at a total dose of 0.5 and 2 Gy, respectively. Blood from mice exposed to radiation were evaluated using cytokine assays and complete blood count. Peripheral lymphocytes and neutrophils decreased in a dose dependent manner following high dose rate radiation. The peripheral lymphocytes population remained unchanged following low dose rate radiation; however, the neutrophils population increased after radiation. The sera from these mice exhibited elevated levels of flt3 ligand and granulocyte-colony-stimulating factor (G-CSF), after high/low dose rate radiation. These results suggest that low-dose-rate radiation does not induce blood damage, which was unlike high-dose-rate radiation treatment; low-dose-rate radiation exposure activated the hematopoiesis through the increase of flt3 ligand and G-CSF.

Effects of Low Level Laser Therapy on Herpetic Neuralgia (대상포진성 신경통에 대한 저출력 레이저 치료)

  • Moon, Won-Bae;Kim, Hae-Kyu;Baik, Seong-Wan;Kim, Inn-Se;Chung, Kyoo-Sub
    • The Korean Journal of Pain
    • /
    • v.3 no.2
    • /
    • pp.139-143
    • /
    • 1990
  • There are several methods for the treatment of herpetic neuralgia, but there is no method that results in complete remission. The laser has lately come into use to reduce several acute or chronic pains. Twenty six patients who suffered from herpetic neuralgia were treated with Ne-Ne and Ga Al AS lasers simultaneously 2 or 3 times per week. In order to determine the degree of pain relief, we used the visual analogue scale. The results were as follows. 1) Low level laser therapy (LLLT) was a non-invasive, simple method. 2) The improvement rate after 15 irrradiations of laser was 63%. 3) The Highest improvement rate (24%) was shown after one irradiation of laser. 4) Only one patient above age 60 (3.8%) developed postherpetic neuralgia. 5) There was no significant difference effects of LLLT between above and below the age of 60. 6) There was no complication during or after irradiation of laser.

  • PDF

Review of Domestic Papers on Low level laser therapy -mainly focused on laser apparatus- (저출력(低出力)레이저 침 치료에 관한 국내(國內) 논문(論文) 분석(分析) -레이저 기기(器機) 중심(中心)-)

  • Yi, Seung-Ho;Lee, Sung-Hun;Park, Hi-Joon;Soh, Kwang-Sup;Lim, Sa-Bi-Na
    • Korean Journal of Acupuncture
    • /
    • v.22 no.2
    • /
    • pp.163-181
    • /
    • 2005
  • Objective: The purpose of this study is to review research papers on low level laser therapy (LLLT) and to improve the knowledge of LLLT field. Methods: For introduction, laser characteristics, including wavelength, medium, beam size, power, and unit power were explained. In order to understand LLLT, tissue optics and light-biomatter interaction were briefly mentioned. We reviewed 21 Korean papers on laser acupuncture and LLLT on the viewpoint of laser apparatus. Results and Conclusion: We found that the description of laser apparatus employed for LLLT experiments were not fully written. Laser wavelength and power which are the most crucial parameters, were omitted in several papers. No paper had information on beam size. In order to have high efficacy, laser should be used with proper laser parameters. Conditions of irradiation area or acupoints should be considered too. Some future technology on laser acupuncture were mentioned.

  • PDF

Performance Analysis of Low-level Radiation Shielding Sheet with Diamagnetic Nanoparticles

  • Cho, Jae-Hwan;Kim, Myung-Sam
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 2015
  • In this study, the authors attempted to produce a medical radiation shielding fiber that can be produced at a nanosize scale and that is, unlike lead, harmless to the human body. The performance of the proposed medical radiation shielding fiber was then evaluated. First, diamagnetic bismuth oxide, an element which, among elements that have a high atomic number and density, is harmless to the human body, was selected as the shielding material. Next, 10-100 nm sized nanoparticles in powder form were prepared by ball milling the bismuth oxide ($Bi_2O_3$), the average particle size of which is $1-500{\mu}m$, for approximately 10 minutes. The manufactured bismuth oxide was formed into a colloidal solution, and the radiation shielding fabric was fabricated by curing after coating the solution on one side or both sides of the fabric. The thicknesses of the shielding sheets prepared with bismuth oxide were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1.0 mm. An experimental method was used to measure the absorbed dose and irradiation dose by using the lead equivalent test method of X-ray protection goods presented by Korean Industrial Standards; the resultant shielding rate was then calculated. From the results of this study, the X-ray shielding effect of the shielding sheet with 0.1 mm thickness was about 55.37% against 50 keV X-ray, and the X-ray shielding effect in the case of 1.0 mm thickness showed shielding characteristics of about 99.36% against 50 keV X-ray. In conclusion, it is considered that nanosized-bismuth radiation shielding fiber developed in this research will contribute to reducing the effects of primary X-ray and secondary X-ray such as when using a scattering beam at a low level exposure.

Plant Extracts and Plant-Derived Compounds: Promising Players in Countermeasure Strategy Against Radiological Exposure: A Review

  • Kma, Lakhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2405-2425
    • /
    • 2014
  • Radiation exposure leads to several pathophysiological conditions, including oxidative damage, inflammation and fibrosis, thereby affecting the survival of organisms. This review explores the radiation countermeasure properties of fourteen (14) plant extracts or plant-derived compounds against these cellular manifestations. It was aimed at evaluating the possible role of plants or its constituents in radiation countermeasure strategy. All the 14 plant extracts or compounds derived from it and considered in this review have shown some radioprotection in different in vivo, ex-vivo and or in vitro models of radiological injury. However, few have demonstrated advantages over the others. C. majus possessing antioxidant, anti-inflammatory and immunomodulatory effects appears to be promising in radioprotection. Its crude extracts as well as various alkaloids and flavonoids derived from it, have shown to enhance survival rate in irradiated mice. Similarly, curcumin with its antioxidant and the ability to ameliorate late effect of radiation exposure, combined with improvement in survival in experimental animal following irradiation, makes it another probable candidate against radiological injury. Furthermore, the extracts of P. hexandrum and P. kurroa in combine treatment regime, M. piperita, E. officinalis, A. sinensis, nutmeg, genistein and ginsan warrants further studies on their radioprotective potentials. However, one that has received a lot of attention is the dietary flaxseed. The scavenging ability against radiation-induced free radicals, prevention of radiation-induced lipid peroxidation, reduction in radiation cachexia, level of inflammatory cytokines and fibrosis, are some of the remarkable characteristics of flaxseed in animal models of radiation injury. While countering the harmful effects of radiation exposure, it has shown its ability to enhance survival rate in experimental animals. Further, flaxseed has been tested and found to be equally effective when administered before or after irradiation, and against low doses (${\leq}5Gy$) to the whole body or high doses (12-13.5 Gy) to the whole thorax. This is particularly relevant since apart from the possibility of using it in pre-conditioning regime in radiotherapy, it could also be used during nuclear plant leakage/accidents and radiological terrorism, which are not pre-determined scenarios. However, considering the infancy of the field of plant-based radioprotectors, all the above-mentioned plant extracts/plant-derived compounds deserves further stringent study in different models of radiation injury.