• Title/Summary/Keyword: Low input current ripple

Search Result 87, Processing Time 0.024 seconds

A Minimization Study of Consuming Current and Torque Ripple of Low Voltage BLDC Motor (저전압용 BLDC 전동기의 소비전류 및 토크리플 최소화 연구)

  • Kim, Han-Deul;Shin, Pan Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1721-1724
    • /
    • 2017
  • This paper presents a numerical optimization technique to reduce input current and torque ripple of the low voltage BLDC motor using core, coil and switching angle optimization. The optimization technique is employed using the generalized response surface method(RSM) and sampling minimization technique with FEM. A 50W 24V BLDC motor is used to verify the proposed algorithm. As optimizing results, the input current is reduced from 2.46 to 2.11[A], and the input power is reduced from 59 [W] to 51 [W] at the speed of 1000 [rpm]. Also, applied the same optimization algorithm, the torque ripple is reduced about 7.4 %. It is confirmed that the proposed technique is a reasonably useful tool to reduce the consuming current and torque ripple of the low voltage BLDC motor for a compact and efficient design.

Improved LCCT Z-Source DC-AC Inverter for Ripple Reduction of Input Current and Capacitor Voltage (입력전류와 커패시터 전압의 맥동저감을 위한 개선된 LCCT Z-소스 DC-AC 인버터)

  • Shin, Yeon-Soo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1432-1441
    • /
    • 2012
  • In this study, an improved LCCT(Inductor-Capacitor-Capacitor-Trans) Z-source inverter(Improved LCCT ZSI) with characteristics of Quasi Z-source inverter(QZSI) and LCCT Z-source inverter(LCCT ZSI) is proposed. The proposed inverter can also reduce the voltage stress and input current/capacitor voltage ripples compared with conventional LCCT ZSI and Quasi ZSI. A two winding trans in Z-impedance network of the conventional LCCT ZSI is replaced by a three winding trans in the proposed inverter. To verify the validity of the proposed inverter, a DSP controlled hardware was made and PSIM simulation was executed for each method. Comparing the current and voltage ripples of each method under the condition of input DC voltage 70[V] and output AC voltage 76[Vrms], the input current and capacitor voltage ripple factors of the proposed inverter were low as 11[%] and 1.4[%] respectively. And, for generation of the same output AC voltage of each method, voltage stress of the proposed inverter was low as 175[V] under the condition of duty ratio D=0.15. As mentioned above, we could know that the proposed inverter have the characteristics of low voltage stress, low ripple factor and low operation duty ratio compared with the conventional methods. Finally, the efficiency according to load change/duty ratio and the transient state characteristics were discussed.

A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

  • Hu, Xuefeng;Zhang, Meng;Li, Yongchao;Li, Linpeng;Wu, Guiyang
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.590-600
    • /
    • 2017
  • This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance $r_{DS}$(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

Design and Analysis of 20 W Class LED Converter Considering Its Control Method (제어 방식에 따른 20 W급 LED Converter 설계 및 분석)

  • Jeong, Young-Gi;Kim, Sung-Hyun;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.53-57
    • /
    • 2012
  • In this paper, by designing 20 W class driving circuit for driving high-power LED (Light Emitting Diode), we are going to comparatively carry out the analysis of characteristics for power circuit according to each design method. In this case, 200 V 60 Hz was performed as input data. The electrical characteristics such as voltage, current and ripple are checked for constant current circuit and constant voltage circuit in the LED module. In addition, as the ripple has an influence on illumination of LED light, low temperature working (-20 [$^{\circ}C$]) and high temperature working(80 [$^{\circ}C$]) are measured to make sure the ripple characteristics in accordance with temperature. In low temperature operation -20 [$^{\circ}C$] measurements, both constant current circuit and constant-voltage circuit were less impacted on input fluctuation, whereas in the high temperature operation 80 [$^{\circ}C$], current voltage in constant voltage circuit was surge after 430 [hour]. Voltage current ripple of constant current circuit was much less than constant voltage circuit, therefore we can show that constant current circuit is more stable.

Optimal Design of Interleaved Boost Converters for Fuel Cell Applications (연료전지용 다상부스트 컨버터의 최적 설계기법)

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Kang, Hyun-Soo;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1003-1011
    • /
    • 2008
  • In this paper, optimal design of interleaved boost converters is studied in order to design low ripple, size, loss and high performance converters for fuel cell applications. Also, the process of optimal design of interleaved boost converter has been performed. Input current ripple, output voltage ripple, losses and capacity of electrical components are theoretically analyzed and informative simulation and experimental results are provided.

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

PWM Method with Low d-axis Current Ripple for reducing Input Current THD at Light Loads in Three Phase PWM Rectifier (3상 PWM 정류기의 경부하시 입력전류 THD 저감을 위한 d축 전류리플 저감 PWM 방법)

  • Jin, Yong-Sin;Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.478-485
    • /
    • 2012
  • In this paper, a new PWM method is proposed to reduce the input current harmonics of 3 phase PWM rectifier. In the conventional carrier comparison PWM method, a triangular wave is generally used as the carrier wave. However, the large d-axis current ripple by the triangle carrier wave may be a source of large input current THD(Total Harmonic Distortion). In this paper, a new carrier comparison PWM method with saw tooth wave is proposed. Depending on the sector where the voltage command vector places, one of the rising or falling saw tooth wave is selected. To reduce the switching losses of the saw tooth carrier PWM, the discontinuous PWM is also presented. The proposed PWM method can reduce the d-axis current ripple as well as the switching losses. The performance of the conventional and proposed PWM methods is verified by the simulation and experimental results.

Input/Output Ripple Analysis of Interleaved Soft Switching Boost Converter (인터리브드 소프트 스위칭 부스트 컨버터의 입출력 리플 분석)

  • Jung, Doo-Yong;Ji, Young-Hyok;Kim, Young-Real;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.182-189
    • /
    • 2012
  • In this paper, the input current and output voltage ripple of the soft switching interleaved boost converter was analyzed. Ripples of input current and output voltage with an interleaved method is analysed and as a result, the facts that it has lower ripple current than conventional interleaved method is verified. it means that a capacity of a main inductor can be reduced. Besides, a low capacitance of capacitor which means high lifetime and confidence can be used because of reducing ripples of output voltage. In order to verify the validity of the proposed converter used 10uF film capacitor, experiment was performed, and the efficiency of the proposed converter was measured with variable load and duty conditions.

A DC Ripple Voltage Suppression Scheme by Harmonic Injection in Three Phase Buck Diode Rectifiers with Unity Power Factor (단위 역률을 갖는 3상 강압형 다이오드 정류기에서 고조파 주입에 의한 DC 리플전압 저감 기법)

  • 고종진
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.305-308
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output in three phase buck diode rectifiers is presented in this paper. The proposed pulse frequency modulation methods and duty ratio modulation methods are employed to regulate the output voltage of the buck diode rectifiers and guarantee zero-current -switching(ZCS) of the switch over the wide load range The proposed control methods used in this paper provide generally good performance such as low THD of the input line current and unity power factor. IN addition control methods can be effectively used to suppress the low frequency ripple voltage appeared in the dc output voltage. The harmonic injection technique illustrates its validity and effectiveness through the simulations.

  • PDF

Characteristic comparisons of the constant current LED driver by the ripple of the input voltage (LED 정전류 구동회로의 입력전압 리플 크기에 의한 특성 비교)

  • Park, Chong-Yeun;Jeon, In-Ung;Yoo, Jin-Wan;Choi, Young-Min
    • Journal of Industrial Technology
    • /
    • v.32 no.A
    • /
    • pp.115-118
    • /
    • 2012
  • Recently, there are a lot of papers in order to replace the electrolytic capacitor into the film capacitor in output of PFC(Power Factor Correction). However, the film capacitor, which has capacitance of low values, causes a large ripple voltage in output of PFC. The LED drivers are connected series in the output of PFC and affected by the magnitude of voltage ripple. In this paper, we have compared the fixed frequency method with the variable frequency for the constant-current control and propose the control method to avoid the sub-harmonic oscillation in the variable input voltage. An 80W PFC, using film capacitors instead of electrolytic capacitors, and LED driver has been built and compared the fixed frequency control method with the variable frequency control method.

  • PDF