• 제목/요약/키워드: Low hardness

검색결과 1,525건 처리시간 0.028초

경도변화에 따른 Al의 밀링가공시 가공 특성에 관한 연구 (A Study on the Cutting Characteristics of AI in End Milling for Various Hardnesses)

  • 김성일;이상진;김민호;김태영;이위로
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.34-39
    • /
    • 2004
  • The cutting tests of aluminum alloy for various hardnesses were carried out using CNC milling machine. The surface roughness{Ra, Rmax) of cut surface and cutting forces are measured at various cutting conditions such as spindle speed, feed speed and hardness. In the CNC end-milling, the surface roughness increases as feed speed increases and decreases as spindle speed increases. However, the bulit-up edge has occurred on in case of low hardness and low feed speed. In experimental conditions, as the hardness of aluminum alloy increases, the surface roughness(Ra, Rmax) decreases

  • PDF

인공 신경망 모델을 활용한 조미니 곡선 예측 (Prediction of Jominy Curve using Artificial Neural Network)

  • 이운재;이석재
    • 열처리공학회지
    • /
    • 제31권1호
    • /
    • pp.1-5
    • /
    • 2018
  • This work demonstrated the application of an artificial neural network model for predicting the Jominy hardness curve by considering 13 alloying elements in low alloy steels. End-quench Jominy tests were carried out according to ASTM A255 standard method for 1197 samples. The hardness values of Jominy sample were measured at different points from the quenched end. The developed artificial neural network model predicted the Jominy curve with high accuracy ($R^2=0.9969$ for training and $R^2=0.9956$ for verification). In addition, the model was used to investigate the average sensitivity of input variables to hardness change.

AISI304L 스테인리스강의 저온 플라즈마 침탄처리 후 질화처리 시 Ar 가스가 표면 경화층에 미치는 영향 (The Influence of Ar Gas in the Nitriding of Low Temperature Plasma Carburized AISI304L Stainless Steel.)

  • 정광호;이인섭
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.125-130
    • /
    • 2008
  • Conventional plasma carburizing or nitriding for austenitic stainless steels results in a degradation of corrosion resistance. However, a low temperature plasma surface treatment can improve surface hardness without deteriorating the corrosion resistance. The 2-step low temperature plasma processes (the combined carburizing and post nitriding) offers the increase of both surface hardness and thickness of hardened layer and corrosion resistance than the individually processed low temperature nitriding and low temperature carburizing techniques. In the present paper, attempts have been made to investigate the influence of the introduction of Ar gas (0~20%) in nitriding atmosphere during low temperature plasma nitriding at $370^{\circ}C$ after low temperature plasma carburizing at $470^{\circ}C$. All treated specimens exhibited the increase of the surface hardness with increasing Ar level in the atmosphere and the surface hardness value reached up to 1050 HV0.1, greater than 750 $HV_{0.1}$ in the carburized state. The expanded austenite phase (${\gamma}_N$) was observed on the most of the treated surfaces. The thickness of the ${\gamma}_N$ layer reached about $7{\mu}m$ for the specimen treated in the nitriding atmosphere containing 20% Ar. In case of 10% Ar containing atmosphere, the corrosion resistance was significantly enhanced than untreated austenitic stainless steels, whilst 20% Ar level in the atmosphere caused to form CrN in the N-enriched layer (${\gamma}_N$), which led to the degradation of corrosion resistance compared with untreated austenitic stainless steels.

쾌속조형 듀라폼몰도와 저융점합금을 이용한 주얼리용 마스터패턴 제작에 관한 연구 (Study of Manufacturing Jewelry Master Pattern by Using the DuraForm Rapid Prototyping Mold and the Low Melting Alloy)

  • 주영철;송오성
    • 한국주조공학회지
    • /
    • 제22권5호
    • /
    • pp.265-270
    • /
    • 2002
  • A novel jewelry master pattern manufacturing process which reduce manufacturing steps by employing a Duraform rapid prototyping mold and a low melting alloy has been suggested. The novel process follows the steps of 'jewelry 3D CAD design ${\rightarrow}$ Durafrom RP mold ${\rightarrow}$ low melting alloy master pattern' while the previous process follows more complicated steps of 'jewelry idea sketch ${\rightarrow}$ detailed drawing ${\rightarrow}$ wax carving ${\rightarrow}$ flask ${\rightarrow}$ silver master pattern.' An upper and a lower part of molds have been manufactured of Duraform powder, of which melting point is $190^{\circ}C$. A maser pattern was manufactured by pouring a low melting alloy of Pb-Sn-Bi-Cd, so called Woods Metal, of which melting point is $70^{\circ}C$, into the mold. The master pattern is a shape of a disk of 20mm diameter that contains various design factors. The variations of dimensions, surface roughness, surface pore ratio were measured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of were maeasured by an optical microscope, a surface roughness profilometer, and a Rockwell hardness tester. The pattern made of low melting alloy has sufficient surface hardness, and surface pore ratio to be used as the jewelry master pattern.

크로마이징 처리 된 철계 소결 부품의 내식성 및 저 마찰특성 (Corrosion Resistance and Low Friction Property of Sintered Steel Parts via Chromizing Treatment)

  • 김상권;박용진;여국현;이재훈
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.809-815
    • /
    • 2012
  • Recently, as the interest in improving energy efficiency has grown, the demand for vehicle and machine parts that are resistant in high temperature corrosive conditions and abrasive environments has increased. Pack chromizing treatment of sintered steels is a profitable method that satisfies both corrosion resistance and low friction properties. Since austenitic stainless steels have good corrosion resistance but low mechanical hardness, if they are replaced by sintered steel parts with pack chromizing treatment, all the desirable properties such as low price, easy molding, high hardness, low frictional coefficient, and high corrosion resistance, can be obtained. The higher corrosion resistance of the chromized parts over that of the austenitic stainless steels was acquired by coating chromium carbides and a thin chromium oxides layer on the surface. Moreover, the surface morphology of chromized parts, which were composed of chromium rich phases and hardened chromium carbides by diffusing and alloying, had a peak-and-valley shape so that the dimple effect by the wrinkled morphology and high hardness induced a low friction coefficient.

내식성 및 표면경도 향상을 위한 AISI 304L 스테인리스강의 저온 플라즈마질화 프로세스 (Low Temperature Plasma Nitriding Process of AISI 304L Austenitic Stainless Steels for Improving Surface Hardness and Corrosion Resistance)

  • 이인섭
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.629-634
    • /
    • 2009
  • The effects of processing parameters on the surface properties of the hardened layers processed by the low temperature plasma nitrocarburizing and the low temperature two-step plama treatment (carburizing+nitriding) were investigated. The nitrogen-enriched expanded austenite structure (${\gamma}_N$) or S phase was formed on all of the treated surface. The surface hardness reached up to 1200 $HV_{0.025}$, which is about 5 times higher than that of untreated sample (250 $HV_{0.1}$). The thickness of hardened layer of the low temperature plasma nitrocarburized layer treated at $400^{\circ}C$ for 40 hour was only $15{\mu}m$, while the layer thicknesss in the two-step plama treatment for the 30 hour treatment increased up to about $30{\mu}m$. The surface thickness and hardness increased with increasing treatment temperature and time. In addition, the corrosion resistance was enhanced than untreated samples due to a high concentration of N on the surface. However, higher treatment temperature and longer treatment time resulted in the formation of $Cr_2N$ precipitates, which causes the degradation of corrosion resistance.

고주파열처리에 의한 SM45C 경도가 가공 표면 품위에 미치는 영향에 관한 연구 (A Study on the Surface Roughness Influenced by SM45C Hardness in High Frequency Induction Hardening)

  • 김원일;허성중
    • 열처리공학회지
    • /
    • 제6권1호
    • /
    • pp.1-8
    • /
    • 1993
  • In this paper, the surface roughness influenced by Sm45C hardness in high frequency induction hardening and mechanical characteristics for the changed Hv 598 part and the unchanged hardness Hv 223 part by use of cermet and ceramic cutting tools was experimentally examined. Finally, we could be had some important results by processing surface roughness on cutting conditions such as cutting speed, feed rate, depth of cut and changes of tool nose radius. The results are summarized as follows. 1. In case of the same cutting condition, the hardness of workpiece was high and acquired the best processing surface roughness when the radius of the tool nose had 0.8 mm and feed rate was 0.04 mm/rev. 2. In case of the hardness of workpiece, though the cutting speed didn't have an effect on processing surface roughness, the less feed rate and the more processing surface roughness improved. On the other hand, the low inside the hardness of workpiece, the more cutting speed and the more feed rate increase, the processing surface of roughness improved. 3. Regardless of the hardness of workpiece, the change of the cutting depth didn't have great effect on the surface roughness. 4. On cutting the high surface hardness part with cutting tools of cermet and ceramic, it can be acquired the higher processing surface roughness because it hadn't been taken effect on cutting speed, In case of the cutting process of the low inside hardness part the two cutting tools have acquired the similar processing surface roughness.

  • PDF

초고압을 이용한 나노급 마그네시아 분말의 저온 소결 연구 (Low Temperature Processing of Nano-Sized Magnesia Ceramics Using Ultra High Pressure)

  • 송정호;엄정혜;노윤영;김영욱;송오성
    • 한국세라믹학회지
    • /
    • 제50권3호
    • /
    • pp.226-230
    • /
    • 2013
  • We performed high pressure high temperature (HPHT) sintering for the 20 nm MgO powders at the temperatures from $600^{\circ}C$ to $1200^{\circ}C$ for only 5 min under 7 GPa pressure condition. To investigate the microstructure evolution and physical property change of the HPHT sintered MgO samples, we employed a scanning electron microscopy (SEM), density and Vickers hardness measurements. The SEM results showed that the grain size of the sintered MgO increased from 200 nm to $1.9{\mu}m$ as the sintering temperature increased. The density results showed that the sintered MgO achieved a more than 95% of the theoretical density in overall sintering temperature range. Based on Vickers hardness test, we confirmed that hardness increased as temperature increased. Our results implied that we might obtain the dense sintered MgO samples with an extremely short time and low temperature HPHT process compared to conventional electrical furnace sintering process.

보일러 배관용 P92 파이프강의 기계적 특성 및 미세조직에 관한 연구 (A Study on the Mechanical Property and Microstructure of SA213 P92 Boiler Pipe Steel)

  • 김범수;손태하;민택기
    • 설비공학논문집
    • /
    • 제24권11호
    • /
    • pp.777-783
    • /
    • 2012
  • The hardness and strength test was performed to make the manufacturing process of SA213 P92 boiler pipe steel. And the microstructure change was studied to find out the cause of room temperature property of P92 steel, ie, low hardness and strength property. The room temperature property of P92 steel depends on the improper normalizing and cooling rate. Especially, Ferrite was formed and the steel had low hardness when the temperature was decreased slowly under the cooling rate $1^{\circ}C$/min after normalizing at the temperature around $A_{c1}$ to $A_{c3}$. The critical heat treatment temperature and cooling rate was over $900^{\circ}C$ and over $10^{\circ}C$/min to satisfy the minimum yield and tensile stress which was laid down by ASME Code.

Fabrication of Low Carbon Steel Coated with 18%Cr-2.5%Ni-Fe Powder by Laser Cladding and Its Application on Plastic Injection Mold for Aluminum Diecasting

  • Kim, Cheol-Woo;Yoo, Hyo-Sang;Cho, Kyun-Taek;Jeon, Jae-Yeol;Choi, Se-Weon;Kim, Young-Chan
    • 한국재료학회지
    • /
    • 제31권11호
    • /
    • pp.601-607
    • /
    • 2021
  • Laser cladding a surface treatment process that grants superior characteristics such as toughness, hardness, and corrosion resistance to the surface, and rebuilds cracked molds; as such, it can be a strong tool to prolong service life of mold steel. Furthermore, compared with the other similar coating processes - thermal spray, etc., laser cladding provides superior bonding strength and precision coating on a local area. In this study, surface characteristics are studied after laser cladding of low carbon steel using 18%Cr-2.5%Ni-Fe powder (Rockit404), known for its high hardness and excellent corrosion resistance. A diode laser with wavelength of 900-1070 nm is adopted as laser source under argon atmosphere; electrical power for the laser cladding process is 5, 6, and 10 kW. Fundamental surface characteristics such as crossectional microstructure and hardness profile are observed and measured, and special evaluation, such as a soldering test with molten ALDC12 alloy, is conducted to investigate the corrosion resistance characteristics. As a result of the die-soldering test by immersion of low carbon alloy steel in ALDC12 molten metal, the clad layer's soldering thickness decreases.