Browse > Article
http://dx.doi.org/10.12656/jksht.2018.31.1.1

Prediction of Jominy Curve using Artificial Neural Network  

Lee, Woonjae (Division of Advanced Materials Engineering, Chonbuk National University)
Lee, Seok-Jae (Division of Advanced Materials Engineering, Chonbuk National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.31, no.1, 2018 , pp. 1-5 More about this Journal
Abstract
This work demonstrated the application of an artificial neural network model for predicting the Jominy hardness curve by considering 13 alloying elements in low alloy steels. End-quench Jominy tests were carried out according to ASTM A255 standard method for 1197 samples. The hardness values of Jominy sample were measured at different points from the quenched end. The developed artificial neural network model predicted the Jominy curve with high accuracy ($R^2=0.9969$ for training and $R^2=0.9956$ for verification). In addition, the model was used to investigate the average sensitivity of input variables to hardness change.
Keywords
Artificial neural network; Jominy curve; Hardness; Alloying element effect; Low alloy steels;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A255/99, Standard test method for determining hardenability of steels, ASTM International, 1999.
2 SEP 1664 - Derivation of equations by multiple regression for the calculation of hardenability in the Jominey end quench test on the basis of the chemical composition of steels, Dusseldorf: Verlag Stahleisen GmbH, 2004.
3 A. Zehtab Yazdi, S. A. Sajjadi, S. M. Zebarjad, and S. M. Moosavi Nezhad : Journal of Materials Processing Technology, 199 (2008) 124   DOI
4 D. S. MacKenzie and J. W. Newkirk : Proceedings of the 8th Seminar of the International Federation for Heat Treatment and Surface Engineering, Dubrovnik, Croatia (2001) 139.
5 J. S. Kirkaldy : Metallurgical Transactions A, 4 (1973) 2327.   DOI
6 A. Sugianto, M. Narazaki, M. Kogawara, and A. Shirayori : Proceedings of the 8th Asia-Pacific Conference on Materials Processing, Guilin-Guangzhou, China (2008) 883.
7 H. K. D. H. Bhadeshia : ISIJ International, 39 (1999) 966.   DOI
8 W. Sha and K. L. Edwards : Materials & Design, 28 (2007) 1747.   DOI
9 W. G. Vermeulen, P. J. van der Wolk, A. P. de Weijer, and S. van der Zwaag : Journal of Materials Engineering and Performance, 5 (1996) 57.   DOI
10 L. A. Dobrzanski and W. Sitek : Journal of Materials Processing Technology, 78 (1998) 59.   DOI
11 X. Gao, K. Qi, T. Deng, C. Qiu, P. Zhou, and X. Du : Journal of Iron and Steel Research, International, 13 (2006) 71.   DOI
12 T. K. Ho : Ph.D. dissertation, Iowa State University (1978).
13 A. Jacobs and G. Krauss : Journal of Heat Treating, 2 (1981) 139.   DOI
14 J. Sojka, P. Betakova, L. Hyspecka, L. Cizek, M. SozaEska, and A. Hernas : Proceedings of the 12th International Scientific Conference on Achievements in Mechanical and Materials Engineering, Gliwice- Cracow-Zakopane, Poland (2003) 821.
15 H. K. D. H. Bhadeshia : ISIJ International, 39 (1999) 966.   DOI
16 W. Sha and K. L. Edwards : Materials & Design, 28 (2007) 1747.   DOI
17 D. Dunne, H. Tsuei, and Z. Sterjovski : ISIJ International, 44 (2004) 1599.   DOI
18 S. J. Lee and Y. K. Lee : Acta Materialia, 56 (2008) 1482.   DOI
19 S. J. Lee : ISIJ International, 53 (2013) 1902.   DOI
20 B. Hwang, D. W. Suh, and S. J. Kim : Scripta Materialia, 64 (2011) 1118.   DOI