• Title/Summary/Keyword: Low glass transition temperature

Search Result 167, Processing Time 0.04 seconds

Characteristics of Hot Embossing using DVD/Blu-ray Stamper (DVD/Blu-ray 스템퍼를 이용한 핫엠보싱 특성)

  • Kim B. H.;Ban J. H.;Shin J. K.;Kim H. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.305-310
    • /
    • 2004
  • The Hot Embossing Lithography(HEL) as a method for the fabrication of nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this study, we investigated the characteristics of hot embossing lithography as a nanoreplication technique. To grasp characteristics of nano patterning rheology by process parameters(embossing temperature, pressure and time), we have carried out various experiments by using the DVD(400nm pattern width) and Blu-ray nickel stamps(150nm pattern width). During the hot embossing process, we have observed the characteristics of the size effect. The quality of products made by hot embossing is affected by its cooling shrinkage. The demolding process at the glass transition temperature results in low quality because of the shrinkage of the polymer. Therefore, the quantification of the temperature condition is essential for the replication of high quality.

  • PDF

Synthesis and Characterization of N-Butyl-N-(2-nitratoethyl) nitramine (에너지화 가소제인 BuNENA의 합성 및 특성분석)

  • 민병선;박영철;임유진
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.74-85
    • /
    • 2003
  • NENA(nitratoethyl nitramine) compounds, especially BuNENA(N-butyl-N-(2-nitratoethyl)-nitramine), are of high interest to both rocket propulsion and military high explosives because of low sensitivity to many forms of stimuli, although they are less energetic than conventional nitrate ester plasticizers. One of advantages in using NENAs is that they provide higher impulse at any given flame temperature than conventional propellants do. BuNENA has better thermochemical characteristics(low melting point and low glass transition temperature), therefore has less tendency to crystallize out of matrices. BuNENA was successfully synthesized in a high yield by reaction of n-butyl aminoethanol and 98% nitric acid followed by dehydrogenation of salt mixture by $Ac_2$/$ZnCl_2$.

Analysis of Effects on Concrete Beam Strengthened with CFRP Plate according to Temperature Change (CFRP로 보강된 콘크리트 보의 온도 변화에 따른 영향 분석)

  • 조홍동;한상훈;이승수;신진환
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • In this study, the behavior characteristics of specimen strengthened with CFRP plate were analyzed according to the change of temperature. CFRP plate itself has a good resistance at the high temperature, but epoxy used as a adhesive is lost its bonding strength at the relatively low temperature. Therefore, this study carries out experiment on the beams slot-bonded with CFRP plates in order to maintain the successful bonding strength of epoxy at high temperature. It is presented that the range of glass transition temperature is 60-8$0^{\circ}C$ and RC beams slot-bonded with CFRP plate shows more increasing resistance and failure load than that of interface bonded at the high temperature.

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

DESIGN OF ION CONDUCTIVE POLYMERS BASED ON IONIC LIQUIDS

  • Ohno, Hiroyuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.123-124
    • /
    • 2006
  • Ionic liquids (ILs) are collecting keen interests as an advanced substituent of electrolyte solution as well as novel solvents. In the present talk, I will introduce some strategies to fix IL structure on polymer chains to prepare polar polymers with low glass transition temperature. Namely, cationic, anionic, and zwitterionic monomers have been prepared, and they have been homopolymerized or copolymerized to prepare polymer electrolytes with different properties. The polymers themselves showed very poor ionic conductivity, but it was improved by suitable spacer between charged site and main chain. Other unique characteristics of functional ILs and new polymerized ionic liquids will also be mentioned.

  • PDF

The Study for Impact Strength change of Microcellular foamed Recycled ABS (초미세 발포 플라스틱의 재생 후 강도변화에 대한 연구)

  • 성갑제;차성운;윤재동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.896-899
    • /
    • 2002
  • Microcellular foaming Process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This method make the glass transition temperature of polymers low, and diminish the residual stress of polymers. This characteristics of Microcellular foaming process influences the physical properties of recycled polymers. This paper describes about the impact strength change of Microcellular foamed recycled ABS.

  • PDF

High Temperature Deformation Behavior of Fe-base High Strength Alloys (고강도 Fe계 합금의 고온 변형 특성)

  • Kwon, Woon-Hyun;Choi, Il-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.938-946
    • /
    • 2008
  • Fe-base amorphous alloy and two crystalline phases composite were fabricated. The effect of temperature and strain rate on mechanical properties was evaluated utilizing compression test. Mixture of non-crystalline and crystalline phases were found using X-ray diffraction (XRD) and differential thermal analysis (DTA) tests. Based on glass transition temperature and crystallization temperature. compression tests were performed in the temperature ranging from $560^{\circ}C$ to $700^{\circ}C$ with $20^{\circ}C$ interval. Relationship between microstructure, including fracture surface morphology, and mechanical behavior was studied. The peak stress of Fe-base amorphous alloy was over 2GPa and expected to have a good wear resistance, but it is expected hard to deform because of low ductility. The peak stress and elongation of two crystalline phases composite was over 1GPa and about 20%, therefore it is possible to deform high strength wear resistant materials such as engine valve.

Linear Response Theory for the Mechanical Energy Relaxation of Solid High Polymers at Low Temperature (抵溫에서의 固體 重合體의 力學的 에너지 緩和에 對한 線形反應 理論)

  • Eu, Byung Chan
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.340-350
    • /
    • 1976
  • Linear response theory is proposed to be applied for theoretical description of the phenomena in mechanical spectroscopy of solid high polymers below glass transition temperatures. The energy dissipation by sample is given in terms of certain time correlation functions. It is shown that the result leads to the result by Kirkwood on the energy loss and relaxation of cross-linked polymers, if the Liouville operator is replaced by the diffusion equation operator of Kirkwood. An approximation method of calculating the correlation functions is considered in order to show a way to calculate relaxation times. Using the approximation method, we consider a double-well potential model for energy relaxation, in order to see a connection between the present theory and a model theory used in mechanical energy relaxation phenomena of solid polymers containing pendant cyclohexyl groups at low temperature.

  • PDF

Emission Properties of Electroluminescent Device having Emitting Layer Dried at Different Temperature (발광층의 건조온도에 따른 전계발광소자의 발광특성)

  • 서부완;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.602-605
    • /
    • 1999
  • We dried emitting layer of EL device at 30, 80, I20 and $150^{\circ}C$ for Ihr to investigate the effects to the emission characteristics of devices. PL intensity of P3HT thin film decreased with increasing the drying temperature. But, the EL intensity and stability of device with emitting layer dried at $150^{\circ}C$ were the best. We think it s because of absence of water and remaining solvent in P3HT emitting layer. So, We suggest that the drying temperature of emitting layer of EL device should be select slightly low temperature than its glass transition temperature.

  • PDF

Effect of Phenyl Vinyl Methyl Silicone (PVMQ) on Low Temperature Sealing Performance of Fluorosilicone Composites

  • Lee, Jin Hyok;Bae, Jong Woo;Choi, Myoung Chan;Yun, Yu-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.209-216
    • /
    • 2021
  • In this study, we observed the mechanical properties, thermal stability, and low temperature sealing performance of fluorosilicone elastic composites. When the blend ratio of Phenyl vinyl methyl silicone (PVMQ) was increased, the tensile strength, modulus at 100%, and compression set were decreased. The thermal stability of fluorosilicone elastic composites showed a similar tendency. These were caused by poorer green strength of PVMQ than Fluorosilicone rubber (FVMQ). The change in the tensile strength and elongation at -40℃ showed a decreasing tendency with increasing PVMQ blend ratio. By increasing the PVMQ blend ratio, low-temperature performance was improved. The Dynamic mechanical analysis (DMA) results showed that Tg was decreased and low-temperature performance was improved with increasing PVMQ blend ratio. However tanδ was decreased becaused of the poor green strength and elasticity of PVMQ. From a hysteresis loss at -40℃, the hysteresis loss value was increased and fluorosilicone elastic composites showed the decreasing tendency of elasticity with increasing PVMQ blend ratio. From the TR test, TR10 was decreased with increasing PVMQ blend ratio. FS-4 (45% PVMQ blended composites) showed a TR10 of -68.0℃ that was 5℃ lower than that of FS-1 (100% FVMQ). The gas leakage temperature was decreased with increasing PVMQ blend ratio. The gas leakage temperature of FS-4 was -69.2℃ that was 5℃ lower than that of FS-1. Caused by the polymer chain started to transfer from a glassy state to a rubbery state and had a mobility of chain under Tg, the gas leakage temperature showed a lower value than Tg. The sealing performance at low temperature was dominated by Tg that directly affected the mobility of the polymer chain.