• Title/Summary/Keyword: Low frequency electrical stimulation

Search Result 90, Processing Time 0.019 seconds

New Methods of Vagus Nerve Stimulation : Therapeutic Effects of Non-Invasive Vagus Nerve Stimulation by TENS Application (미주신경 자극을 위한 새로운 방법 : 비침습적 TENS 적용에 대한 미주신경 자극의 치료적 효과)

  • Kwon, Haeyeon;Moon, Hyunju
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.4
    • /
    • pp.77-82
    • /
    • 2016
  • Purpose: The purpose of this study was to investigate the therapeutic effect of non-invasive vagus nerve stimulation by transcutaneous electrical nerve stimulation application on the autonomic nervous system of human body. Methods: Participants were seventeen healthy adults. Standard deviation of all normal N-N intervals(SDNN), root mean square of successive differences(RMSSD), low frequency(LF), high frequency(HF) were compared in pre and post Mean values after intervention. Data were analyzed in Wilcoxon's signed-ranks test. Results: The results of this study is that sistolic blood pressure and pulse rate decreased mean value after non-invasive vagus nerve stimulation by transcutaneous electrical nerve stimulation. High frequency, low frequency, SDNN, RMSSD increased mean value in heart rate variability after intervention. But that is not significant except for SDNN. Conclusion: Non-invasive vagus stimulation by transcutaneous electrical nerve stimulation effect on parasympathetic nerve stimulation, and then it might be effective method for autonomic nerve balance control.

The Effect of an Abdominal Drawing-In Maneuver Combined with Low·High Frequency Neuromuscular Electrical Stimulation on Trunk Muscle Activity, Muscle Fatigue, and Balance in Stroke Patients

  • Kang, Jeong-Il;Jeong, Dae-Keun;Baek, Seung-Yun;Heo, Sin-Haeng
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.5
    • /
    • pp.205-211
    • /
    • 2022
  • Purpose: This study investigated the effects of an intervention that combined the abdominal drawing-in maneuver and frequency-specific neuromuscular electrical stimulation on changes in trunk muscle activity, muscle fatigue, and balance in stroke patients. Methods: Thirty stroke patients were randomly assigned to two groups. Fifteen subjects were assigned to group I which performed the abdominal drawing-in maneuver combined with low-frequency neuromuscular electrical stimulation and the other 15 subjects to group II where the abdominal drawing-in maneuver was combined with high-frequency neuromuscular electrical stimulation. Muscle activity and fatigue were measured using surface electromyography before the intervention. Balance was measured using the Trunk Impairment Scale and re-measured after six weeks of intervention for comparative analysis. Results: Both groups showed a significant increase in muscle activity and balance (p<0.05), and there was no significant difference between the groups (p>0.05). In the changes in muscle fatigue, only the experimental group II showed a significant increase in muscle fatigue (p<0.05). The difference between the groups was statistically significant (p<0.05). Conclusion: It was confirmed that among stroke patients, the combination of the abdominal drawing-in maneuver and low-frequency neuromuscular electrical stimulation was more effective in changing the muscle activity and balance of the trunk by minimizing the occurrence of muscle fatigue compared to the combination of the abdominal drawing-in maneuver and high-frequency stimulation. These results can be used as basic data for clinical trunk stabilization training.

The Effect of Electrical Stimulation Applied in Dominant Forearm on Autonomic Nervous System Response of Both Hands (우세측 전완에 적용한 전기자극이 양쪽 손 자율신경계 반응에 미치는 효과)

  • Lee, Dong-Geol;Seo, Sam-Ki;Lee, Jeong-Woo
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.7 no.1
    • /
    • pp.7-10
    • /
    • 2009
  • Purpose : The purpose of this study was to investigate the effect of electrical stimulation applied in dominant forearm on autonomic nervous system response of both hands. Methods : Fourteen healthy subjects (women) received low frequency-high intensity electrical stimulation to one forearm. The subjects assigned to two groups; a ipsilateral stimulation group (n=7) and a contralateral stimulation group (n=7). The electrode attachment was arranged on the forearm of the dominant arm and the electricity stimulus time was set as 15 minutes. Measuring items were the skin conduction velocity, the blood flow, and the pulse rate, which were measured total 3 times (pre, post, and post 10 min.). Results : The skin conduction velocity showed a significant difference according to the change of the time in both hands, but there was no significant difference according to time in the blood flow, and the change of the pulse frequency regardless of stimulus side. Conclusion : These results demonstrate that the low frequency-high intensity electrical stimulation applied dominant forearm can increase selectively only with the skin conduction velocity, which may be helpful for the activation of the sudomotor function of both hands by the activation of sympathetic nerve.

Inhibition of pain substance-induced contraction of vasoactive intestinal polypeptide (VIP) and Increment of VIP of silver spike point low frequency electrical Stimulation (Vasoactive intestinal polypeptide (VIP)의 통증관련물질-유도근 수축반응의 억제와 은침점 저주파 전기자극의 VIP 증가)

  • Choi, Young-Deog;Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.4
    • /
    • pp.442-454
    • /
    • 2003
  • The aim of this study was to demonstrate the effects of silver spike point (SSP) low frequency electrical stimulation on plasma vasoactive intestinal polypeptide (VIP) activities measured by radioimmunoassay from volunteer and the effects of VIP on pain substance-induced contraction investigated by isometric tension methode in animal. The current of 3 Hz continue type, but not 100 Hz continue type, of SSP low frequency electrical stimulation significantly increased in plasma VIP from normal volunteer. The pain substance, such as norepinephrine, serotonin, and prostaglandin $F2{\alpha}$, increased vascular smooth muscle contraction, respectively. These responses were inhibited by VIP applied cumulatively (1 nM - $1\;{\mu}M$), but not serotonin-induced contraction. In addition, serotonin, and prostaglandin $F2{\alpha}$ induced uterine smooth muscle contraction from rat. However, these responses were inhibited by VIP ($1\;{\mu}M$), only serotonin-induced contraction. These results suggest that the VIP regulates pain substance in part and that the SSP low frequency electrical stimulation, specifically current of 3 Hz continue type, significantly increases plasma VIP from volunteer.

  • PDF

The Effects of Transcutaneous Electrical Nerve Stimulation on the Pain Threshold and the Plasma Beta-endorphin Level (경피(經皮) 신경(神經) 자극(刺戟)이 통증역치(痛症閾値)와 혈장(血漿) Beta-endorphine치(値)에 미치는 영향(影響))

  • Kil, Ho-Yeong;Lee, Doo-Ik;Kim, Chul-Ho;Kim, Keon-Sik;Choi, Young-Kyoo;Shin, Kwang-Il
    • The Korean Journal of Pain
    • /
    • v.2 no.2
    • /
    • pp.145-154
    • /
    • 1989
  • Pain is a common and important clinical symptom, and treatments aimed at relieving pain have a central position in medical practice. Recently Transcutaneous Electrical Nerve Stimulation (TENS) has been effectively used to control acute and chronic conditions that produce pain. But the mechanism of analgesia resulting from TENS remains obscure. In order to investigate the analgesic effect of TENS and it's action mechanism, TENS was applied in 40 rabbits with different frequencies, low frequency (2Hz) and high frequency (100Hz), for 20 minutes. And the pain threshold was measured by the temperature before and after stimulation, and an attempt was made to antagonize the stimulation effect with naloxone pretreatment (0.4 mg/kg) The results are as follows: 1) Both low frequency and high frequency TENS resulted in increasing the pain threshold significantly (Both p<0.01). 2) Naloxone pretreatment could antagonize the effect of increasing the pain threshold with low frequency TENS significantly (p<0.01), but not with high frequency TENS. Plasma beta-endorphin was measured by radioimmunoassay using an Beta-Endorphin Kit (Immunonuclear Corporation, Stillwater, Minnesota, USA) and Automatic Gamma Scintillation Counter (Micromedic System 4/2000) before and after stimulation. An attempt was made to reverse the stimulation effect with naloxone pretreatment (0.4 mg/kg). The results are as follows: 1) Low frequency TENS resulted in increasing the level of plasma beta.endorphin significantly (p<0.01), but high frequency TENS did not. 2) Naloxone pretreatment could reverse the effect of increasing the plasma beta-endorphin level with low frequency TENS significantly (p<0.01).

  • PDF

Change in Autonomic Nerve Responses after Low-frequency Transcutaneous Electrical Nerve Stimulation

  • Lee, Jeong-Woo;Park, Ah-Rong;Hwang, Tae-Yeon
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.6
    • /
    • pp.71-76
    • /
    • 2010
  • Purpose: The purpose of this study was to examine changes in autonomic nerve responses after low-frequency transcutaneous electrical nerve stimulation (TENS). Methods: Research subjects were 24 students who attend University. Subjects were divided into two groups: 1 = a low intensity group; 2 = a high intensity group. Electrodes were attached to the forearm of the dominant arm and electrical stimuli were administered for 15 minutes. Outcome measures were skin conduction velocity, skin temperature, blood flow, and pulse frequency, each of which was measured a total of 4 times. The data were analyzed using a repeated measures ANOVA. Results: In changes in conduction velocity, the main effect of time variation (in black) was statistically significant. The interaction between time and group main effects was not statistically significant; nor was the difference between the groups. Results showed that skin conduction velocity changed without any relation to group. Conclusions: Low frequency TENS selectively increases skin conduction velocity, which may be helpful for activating sudomotor function regardless of intensity.

The Effect of variation in low frequency electrical stimulation on human metabolism (저주파 전기자극의 주파수가 인체대사에 미치는 영향)

  • Kim, Soon-Ja;Chung, Jin-Woo;Lim, Jong-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.685-692
    • /
    • 2001
  • Study the variation of low frequency electrical stimulation on human metabolism which serum to test the increasement of creatine- kinase, myoglobin, lactate .and pyruvate. The results were as followed: 1) Creatine kinase increasement showed significant difference between 200 Hz stimulation group and control group, and also between 300Hz stimulation group and control group, but no significant increasement difference showed in 50 Hz stimulation group compared to control group. 2) Lactate increasement showed significant difference in 200 Hz stimulation group and 300 Hz stimulation group compared to control group, but no significant difference showed in 50 Hz stimulation group. 3) Pyruvate increasement showed significant difference in 50 Hz stimulation group and 200 Hz stimulation group compared to control group, but no significant increasement difference showed between 50 Hz stimulation group and control group. (P < 0.05) 4) Myoglobin increasement showed significant difference in 50Hz stimulation group and 200 Hz stimulation group compared to control group, and also in 200 Hz stimulation group and 300 Hz stimulation group compared to 50Hz stimulation group. ( P < 0.05)

  • PDF

The Effects of Muscle Fatigue by Transcutaneous Electrical Nerve Stimulation (경피신경전기자극이 근피로에 미치는 영향)

  • Park Rae-Joon
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.71-77
    • /
    • 1999
  • The purpose of this study was to investigate the changes of muscle power by transcutaneous electrical nerve stimulation(TBNS), low frequency-low intensity(20pps, invisible muscle contraction intensity), low frequency-high intensity(20pps, visible muscle contraction), high frequency-low intensity(100pps, invisible muscle contraction intensity) and high frequency-high intensity(100pps, visible muscle contraction). The results were as follows. 1. Increased muscle power after 30 minutes of treatment by low frequency-low intensity TENS, and post-treatment 30 minutes muscle power were increased more than pre-treatment power(p<0.05). 2. Decreased muscle power after a 30 minute treatment by low frequency-high intensity TENS, and after the 30 minute treatment was terminated muscle power didn't recover to pre-treatment levels. 3. Decreased muscle power after 30 minute treatment by high frequency-low intensity TENS, but post-treatment 30 minute, muscle power didn't recover to pre-treatment levels. 4. The muscle power was remarkably decreased by high frequency-high intensity TENS after 30 minute treatment, in addition treatment terminated after 30minutes didn,t recover to pre-treatment power(p<0.05). 5. Lower frequency-low intensity TENS are good methods for preventing muscle fatigue, buty high intensity (TENS) are increased muscle fatigue. 6. Traditional TENS by high frequency-low intensity is a good method for preventing muscle fatigue.

  • PDF

Human Stimulation Threshold of Interferential Current Type Low Frequency Stimulator for Electric Shock Experience Education (전기 감전 체험 교육을 위한 저주파 전류 자극기의 인체 자극 임계값)

  • Jeon, Jeong-Chay;Kim, Jae-Hyun;Yoo, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4768-4772
    • /
    • 2012
  • To prevent electric shock accidents, an experience education is more effective than indoctrination education. But an electric shock experience education system required a proper physical stimulation on human body to experience electric shock. This paper experiment threshold values of a human body by using Interferential Current Type Low Frequency Stimulator in order to apply to an electric shock experience education system. And the proper stimulation values are calculated according to age (divided child and adult) and gender. Results of this study could be applied to an electric shock experience education system.

Decrement and Recovery of Maximal Isometric Contraction by Frequency during NMES (신경근전기자극 주파수에 따른 최대 등척성 수축력의 감소 및 회복)

  • Lim, Sang-Wan;Jeong, Jin-Gyu;Jung, Dae-In;Kim, Tae-Youl
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.2 no.2
    • /
    • pp.1-12
    • /
    • 2004
  • The purpose of this study was to determine the effect of muscle fatigue by neuromuscular electrical stimulation(NMES). Using Biodex System 3PRO(Biodex Medical Systems Inc, USA), experiment was conducted as to the normal group(I) composed of fifteen adults and the patient group(II) composed of fifteen patients with spastic hemiplegia. As to each group, maximal tolerated intensity(MTI) and maximal tolerated isometric contraction(MTIC) in electric currents yielded by low rate(20 pps) and high rate(100 pps) neuromuscular electrical stimulation and the aspects of decrease and restoration of the isometric contraction were examined, and their strength decrement index(SDI) and strength recovery index(SRI) were also calculated. 1. As for MTI in NMES, the MTI of the group II was higher than that of the group I in both low rate and high rate NMES. In comparison within group, MTI of group II was significantly higher in high rate NMES rather than in low rate NMES(p<0.05). 2. In comparison of MTIC between groups, the group I showed higher in both low rate and high rate NMES. In comparison within group, MTIC of group II was significantly higher in high rate NMES rather than in low rate NMES(p<0.01). 3. As for SDI, both groups showed highest SDI in high rate NMES, but no significant differences could be observed. 4. As for SRI, both groups showed significantly low SRI in low rate NMES(p<0.01, p<0.05), and comparison between groups showed no significant differences could be observed. These result lead us to the conclusion that muscle fatigue was influenced by frequency, high rate NMES was lower at SDI and higher at SRI on compare to low rate NMES, therefor, a further studies concerning electrical stimulation should consider differences each frequency in response to treatment.

  • PDF