• Title/Summary/Keyword: Low fineness

Search Result 69, Processing Time 0.028 seconds

Effect of Blastfurnace Slag Fineness on the Rheological Properties of Cement Pastes (고로슬래그 분말도가 시멘트 페이스트의 유동특성에 미치는 영향)

  • Song, Jong-Taek;You, Chang-Dal;Byun, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.103-109
    • /
    • 2007
  • In this study, the rheological properties of cement pastes containing blastfurnace slag of different fineness were investigated. The fluidity of cement pastes with low Blaine value blastfurnace slag was increased with decreasing the plastic viscosity and the yield stress of pastes. And the optimum dosage of polycarboxylate type superplasticizer to the cement pastes was confirmed according to the fineness and the replacement ratio of blastfurnace slag. All cement pastes showed the thixotropy behavior. And also it was formed that the segregation range of cement pastes was occurred below $10D/cm^2$ of the yield stress and below 350 cPs of the plastic viscosity by the coaxial cylinder viscometer.

Study on the Sewability of Special Fabrics (특수직물의 봉제에 관한 연구)

  • 장지혜
    • Journal of the Korean Home Economics Association
    • /
    • v.11 no.1
    • /
    • pp.26-43
    • /
    • 1973
  • This study was carried out on the Sewbility of Urethane Foam usually used as coldproof lining. The Sewability was estimated with the Puckering Grade and Seam Efficiency according to the thicknes of urethane foam, fineness and material of sewing thread, and the sort of covering fabric. The result shows the following ; 1. The thick foam proportinally shows the low Puckering Grade. 2. Effect on the sewability is small in fineness of sewing thread but large in material. Especially silk thread shows the greatest sewability in foam sewing. When the material of covering fabric is same as that of sewing thread (for example ; p/c fabric and p/c thread) the sewability is excellent in special. 3. Taffeta in covering foam is not suitable to foam sewing, satin and twill show superior sewability without reagrd to the thickness of foam. 4. In case of sewing foam covered with tricot, optimum thickness of foam and fineness of sewing thread through pretest must determine. 5. The thicker foam is the better seam efficiency tends, and Seam Efficiency largely effects to the strength of the sewing thread itself. 6. The seam Efficiency can heighten with the strength of sewing thread in proportion to that of covering fabric.

  • PDF

An Experimental Study on Hydration and Strength Development of High Blain Cement at Low Temperature (저온환경에서 고분말도 시멘트의 수화반응 및 강도발현 특성에 관한 실험적 연구)

  • Mun, Young-Bum;Kim, Hyeong-Cheol;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Han-Seung;Kim, Mok-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.367-373
    • /
    • 2015
  • In this study, fundamental properties of cement were reviewed to apply high fineness cement at low temperature environment. The classified high fineness cement has large proportion of particles below $10{\mu}m$ which affects early hydration: an overall reaction of cement hydration faster. As a result of using high fineness cement, setting time of concrete was reduced and compressive strength was higher than OPC at all ages. Especially, compressive strength was more than double its value compared with OPC after three days curing in low temperature. Faster reaction and higher heat of hydration was verified by calorimetry early and maximum heat of hydration was analyzed by adiabatic temperature raising test. The analysis of this study confirmed that high fineness cement can be suitable to be used in low temperature environment.

Physical Properties of ALC with Various Fineness of Quartzite (규석 분말도에 따른 ALC의 물리적 특성 변화)

  • Chu, Yong-Sik;Jung, Ui-Jong;Song, Hun;Lee, Jong-Kyu;Kim, Young-Gon;Kang, Dae-Gu
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.407-411
    • /
    • 2010
  • ALC was fabricated using cement, lime and quartzite by hydrothermal reaction. ALC has low strength and brittleness on account of inner pores. The studies for resolving these problems were driven by many researchers. Among these researches, the controls of quartzite fineness have been studied for unsuitable properties of ALC. This study experimented with variation of 90 ${\mu}m$ residue for obtain good physical properties. It was found that 90 ${\mu}m$ residue influenced on physical properties of ALC. The lower amount of 90 ${\mu}m$ residue, the higher compressive and bending strength. But the continuing decrease of 90 ${\mu}m$ residue did not cause the increase of strength. In order to application of these results in process, the states of process and hydrothermal products will be considered.

The Mechanical Properties and Alkali Hydrolysis on Composition Ratio of Nylon 6-Polyester Split-type Yarn (Nylon 6-Polyester 조성비에 따른 분할사의 알칼리 분해거동과 물성 변화)

  • Park, Myung Soo
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.331-338
    • /
    • 2014
  • In this research, split-type complex yarn of 20:80, 40:60, 50:50 nylon6/polyester composition ratio was used in order to impose unique sense on split-type complex woven. After treating both split-type complex yarn of each ratio and its produced woven in alkali solution, we got the following results by checking physical properties based on alkali proportion and treatment time. Under the condition of NaOH 20% in this experiment, it took approximately double time 20% loss of weight. The loss of weight became high when polyester proportion of N/P(nylon6/polyester) composition ratio was low, in the same fineness yarn. Even though polyester proportion was low, the loss of weight was low when the fineness was high. N/P division was well processed at about 25% loss of weight under the condition of NaOH 20%, treatment temperature $50^{\circ}C$, and treatment time 60 minutes. The research provides that the loss of weight should be processed around treatment time 24 hours in the case of NaOH concentration 15%, and treatment time 15 hours in the case of NaOH concentration 18%, respectively, in order to achieve N/P woven division ratio of about 70%-80% in industrial fields.

Experimental Study on the Development of High-Performance Concrete (고성능 콘크리트 개발에 관한 실험적 연구 제 1보 : 고미분말 슬래그 혼합시멘트의 물성)

  • 구자술;이영진;김남호;정재동
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.45-50
    • /
    • 1993
  • This paper describes some results of various tests which were carried out with varying the fineness of salg from 6000 to 10000$\textrm{cm}^2$/g and the slag content in cement from 30 to 50wt% for the perpose of utilizing finely ground blast-furnace slag as an ingredient for high-performance concrete. Test for heat of hydration, microstructural and hydration characteristics in paste, and fluidity and compressive strength in mortar were carried out. From these test results, it was found that, by properly determining the content and fineness of the slag, it is possible to manufacture high-performance concrete that has low heat of hydration, high early strength development, fine pore size and a highly densified microstructure.

  • PDF

Application of Waste Foundry Sand for Concrete-Based Products of Low Water Ratio (낮은 물비를 갖수용성 합성 절삭유의 재사용을 위한 한외여과 연구는 콘크리트 제품에 대한 폐주물사의 적용)

  • Kim, Jin-Man;Cho, Sung-Hyun;Kwak, Eun-Goo
    • Clean Technology
    • /
    • v.8 no.3
    • /
    • pp.129-139
    • /
    • 2002
  • This is the study for recycling waste foundry sand. Authors studied about main subject of grading of aggregate and three experimental items such as physical properties of waste foundry sand, optimum grading for concrete products of low water ratio, and quality variations of concrete products according to substitution proportion of fine aggregate as waste foundry sand. We were convinced of following results by experimental study. The first was that waste foundry sand was not fit as the aggregate for concrete because of bad qualities such as grading, unit weight, solid volume and passing 0.08 mm seive, so it is proper to composition using with other fine aggregetes. The second was that optimum grading is fineness modulus of 2.77 to 3.28 And the last is that optimum condition about substitution proportion as waste foundry sand is 10% fine aggregate.

  • PDF

Improvement of Early Strength of Blast-Furnace Slag Blended Cement at Low Temperature (고로 슬래그 시멘트의 저온 조기 강도 증진)

  • 장복기;임용무;김윤주
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.130-135
    • /
    • 1999
  • The enhanced slag fineness and the batch water of low water-to-cement ratio(W/C) were employed in order to improve the early strength of blast-furnace slag blended cement at low temperature. A grinding aid was used to grind the blast-furnace slag into the fineness of 6,280$\textrm{cm}^2$/g (Blaine), and this fine slag was then homogeneously mixed with the ordinary Portland cement to produce the blast-furnace slag blended cement containing 40% slag by weight composition. On the other hand, the batch water could be reduced from W/C=0.50 (KS L 5105) to W/C=0.33 through a commercial, naphthalene type superplasticizer. Through the method mentioned above, the early strength of the blast-furnace slag blended cement at low temperature could be enhanced even somewhat higher than the Portland cement strength. And the microsturcture of the cement was studied by both the pore structure analysis and the A.C. impedance measurement.

  • PDF

An Experimental Study on the Influence of High Fineness Fly Ash and Water-Binder Ratio on Properties of Concrete (콘크리트 특성에 미치는 고분말도 플라이애쉬의 치환율 및 물-결합재비 영향에 관한 실험적 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Lee, Seung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • Recently, the press and institute recognized fly ash as it had excellent performance. Its research and applications are on the rise largely as a substitute for cement. On the contrary, it is in a situation that the regulation of high fineness fly ash remains at a low level. As for the fly ash in $3,000{\sim}4,500\;cm^2/g$ class fineness regulated in KS L 5405, it is used by substituting it around the unit weight of cement 20%. Accordingly, the regulation in upper classification is in a situation of being insufficient. Therefore, this study aimed to establish 4000, 6000, and 8000 class of fineness of fly ash and three levels of substitute like 15%, 30%, and 45% in order to analyze the substitute and effect of water-binder ratio for fly ash that affected the properties of ternary system concrete. As a result of experiment by planning water-binder ratio for two levels like 40% and 50%, the more replacement ratio and fineness of fly ash increased in the performance not hardened, the more the fluidity increased. This study has found out that the air content decreased, and that there was setting acceleration and it decreased the heat of hydration. In addition, as for the strength properties in a state of performance hardened concrete, the more the replacement ratio and the ratio of water-binding materials increased, the more it had a tendency of being decreased.

Effects of Cement Fineness Modulus (CFM) on the Fundamental Properties of Concrete (시멘트 입도계수(CFM)가 콘크리트의 기초적 특성에 미치는 영향)

  • Noh, Sang-Kyun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Cement Fineness Modulus (CFM) is a method of expressing the distribution of particle sizes of cement in numeric form. If CFM is controlled through crush process of cement without modifying the chemical components or mineral composition of cement, it is judged to be able to produce a cement satisfying various requirements because it is estimated to enable various approaches to cement such as high early strength, moderate heat, low heat cement and so on. Therefore, in this study, as basic research for manufacturing special cement utilizing the controls of CFM, the intention was to review the impacts of CFM on the fundamental properties of concrete. To summarize the result, as mixture characteristics of fresh concrete, ratio of small aggregate and unit quantity were gradually increased, securing greater fluidity, with an increase in CFM, while the amount of AE and SP were reduced gradually. In addition, setting time was delayed as CFM increased. Furthermore, compression strength was relatively high during initial aging as CFM became smaller, but as time passed, compression strength became smaller, and it showed the same level of strength as aging time passed about three years.