• Title/Summary/Keyword: Low fin tube

Search Result 81, Processing Time 0.025 seconds

Forced Convection Correlation for Single Circular Fin-tube Heat Exchanger (단일 원형휜-원형관에 대한 강제대류열전달 상관식)

  • 강희찬;강민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.584-588
    • /
    • 2004
  • This work was performed to investigate the heat transfer characteristics of the circular fin-tube heat exchanger. This paper contains the experimental data for the seven kinds of fin geometries. The correlation of Stasiulevicius agreed with the experimental data at high Reynolds number, however not well at low Reynolds number. The Nusselt number was well correlated with Graetz number, and showed a transition near Gz=10. An empirical correlation proposed in the present work agreed well with the experimental data.

Performance Evaluation of Finned Tube Heat Exchanger with Vortex Generators in a Low Reynolds Number Regime (레이놀즈 수가 낮은 영역에서 와류발생기를 적용한 핀-관 열교환기 성능평가)

  • Kwak Kyung-Min;Song Gil-Dal
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2006
  • The present paper reports the method for evaluation of heat-transfer performance of finned tube heat exchangers in a low Reynolds number regime (Re = $160\~800$) and also reports the data of heat transfer and pressure loss taken from a finned tube heat exchanger with/without vortex generators (VGs) installed as a heat-transfer enhancement device. The evaluation is based on the modified single blow method conducted in a specially designed low Reynolds number duct. Three different test core geometries, i.e., fin only, fin-tube without VGs and that with VGs, are studied here. The data of heat transfer and pressure loss taken from the fin only geometry agree well with the empirical correlations, thus validating the present method as used for low Reynolds number regime. The data taken from the finned tube geometries with and without VGs are presented and compared to examine the effect of VGs in the low Reynolds number regime.

Experimental Study on Condensation Heat Transfer Characteristics of Special Heat Transfer Tubes (응축용 특수 전열관의 열전달 특성에 관한 연구)

  • 한규일;박종운;권영철;조동현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.827-835
    • /
    • 2001
  • In this study, condensation heat transfer characteristics were conducted with special heat transfer tubes of SH-C type. Experiments were carried out the saturated vapor temperature of 334K and the wall subcooling of 1.5-4.5K. The refrigerant was R-113 and the enhanced tubes used in the present study were SH-CDR, SH-CYR and SH-CHR. The experimental results showed that the condensation heat transfer coefficients of SH-C type tubes were about 23-66% higher than those of a low integral-fin tube. It was visualized that the condensed liquid on the outer surface of SH-C type tubes flowed continuously down unlike a low integral-fin tube and a plain tube, due to a 3-D extending fin on the outer surface of SH-C type tubes. As a result, the thermal resistance of the condensed liquid decreased and the heat transfer coefficient increased. Also, the enhancement ratio of SH-CDR tube was the highest, and it was about 9-11 times as compared to that of a plain tube.

  • PDF

Pool Boiling Heat Transfer Charcteristics of Low-Fin Tubes in CFC11, HCFC123 and HCFC141b (CFC11, HCFC123, HCFC141b 풀내에서 낮은 핀관의 비등 열전달특성)

  • 김주형;곽태희;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2316-2327
    • /
    • 1995
  • Experimental results from nucleate pool boiling heat transfer with various finned tubes in CFC11, HCF123 and HCFC141b are reported. One plain tube and four low fin tubes of various fin densities were tested in an attempt to find out the optimum fin density in the heat flux range of 10-60 kW/m$^{[-992]}$ at near atmospheric pressure. The results indicated that CFC11 showed the highest heat transfer coefficients. Its alternatives, HCFC123 and HCFC141b, showed 3-5% lower heat transfer coefficients than those of CFC11 at the same heat flux. As the fin density increases, so does the heat transfer surface area. Measured heat transfer coefficients, however, do not necessarily always increase as the fin density increases. This unique phenomenon seems to be caused by the coalescence of the bubblers that prevent the cool liquid from entering into the fin valleys. For all the refrigerants tested, the optimum fin density yielding the highest performance was 28 fins per inch confirming the previous results by other researchers.

A Study of External Condensation Heat Transfer of Flammable Refrigerants (가연성 냉매의 외부 응축 열전달에 관한 연구)

  • 배동수;하종철;유길상;정동수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.522-529
    • /
    • 2004
  • In this study, external condensation heat transfer coefficients (HTCs) of flammable refrigerants of propylene, propane, isobutane, butane, DME, and HFC32 were measured on a horizontal plain tube, 26 fpi low fin tube, and Turbo-C tube. All data were taken at the temperature of 39$^{\circ}C$ with a wall subcooling of 3∼8$^{\circ}C$. Test results showed a typical trend that condensation HTCs of flammable refrigerants decrease with increasing wall subcooling. HFC32 had the highest HTCs among the tested refrigerants showing 44% higher HTCs than those of HCFC22 while DME showed 28% higher HTCs than those of HCFC22. HTCs of propylene and butane were similar to those of HCFC22 while those of propane and isobutane were similar to those of HFC134a. Based upon the tested data, Nusselt's equation is modified to predict the plain tube data within a deviation of 3%. For 26 fpi low fin tube, Beatty and Katz equation predicted the data within a deviation of 7.3% for all flammable refrigerants tested. The heat transfer enhancement factors for the 26 fpi low fin and Turbo-C tubes were 4.6∼5.7 and 4.7∼6.9 respectively for the refrigerants tested indicating that the performance of Turbo-C tube is the best among the tubes tested.

Pool Boiling Performance of Enhanced Tubes for the Generator of an Absorption Chiller (흡수식 냉동기 재생기용 고성능 전열관의 풀비등 성능)

  • Sim, Yong-Sub;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1684-1691
    • /
    • 2015
  • For performance improvement and compactness, usage of enhanced tube is inevitable. However, studies on enhanced tubes for generator is very limited. In this study, pool boiling tests were conducted for 7 heat transfer tubes. Test range covered pressure 7.38~101.3 kPa and heat flux $20{\sim}40kW/m^2$. Results show that boiling heat transfer coefficient increases as pressure or heat flux increases. Under atmospheric condition, high heat transfer coefficients were obtained for notched fin and low fin tubes(225% and 202% of the 19.0 mm smooth tube, which yielded the lowest heat transfer coefficient). As pressure decreased, high heat transfer coefficients were obtained for a low fin tube(290% and 288% of the 19.0 mm smooth tube at 12.34 and 7.38 kPa).

External Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants and R134a According to the Saturated Vapor Temperature Change on an Enhanced Tube (열전달 촉진관에서 R22 대체냉매 및 R134a의 포화증기 온도변화에 따른 외부 응축 열전달계수에 관한 연구)

  • Yoo Gil-Sang;Hwang Ji-Hwan;Park Ki-Jung;Jung Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.981-989
    • /
    • 2005
  • In this study, external condensation heat transfer coefficients (HTCs) are measured on a low fin tube and Turbo-C tubes at the saturated vapor temperature of $30^{\circ}C$, $39^{\circ}C$, and $50^{\circ}C$ for R22, R410A, R407C and R134a with the wall subcooled at $3{\~}8^{\circ}C$. The HTCs of all refrigerants decreased as increasing the saturation temperature from $30^{\circ}C$ to $50^{\circ}C$. This trend is due to better thermodynamic properties of the liquid phase at low temperature Beatty and Katz's prediction yielded a $20.0\%$ deviation for the low fin tube data. The heat transfer enhancement factors for the 26 fpi low fin tube and Turbo-C tubes are 4.0${\~}$5.5 and 3.0${\~}$8.1 respectively for the refrigerants tested. Finally the performance of Turbo-C tube is better than that of the low fin tube.

A Study on the Improvement of the Water System in Domestic Boiler (가정용 보일러의 급탕시설 개선방안에 관한 연구)

  • Han, Gyu-Il;Park, Jong-Un
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.200-211
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

Experimental Study of the Heat Transfer Rate of the Plate Fin-Tube Condenser for a Household Refrigerator (냉장고용 판형 핀-관 응축기의 열전달 성능에 관한 실험적 연구)

  • Son, Young-Woo;Lee, Jang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4802-4808
    • /
    • 2014
  • A plate-fin tube type heat exchanger has a lighter weight, approximately 30%, than the conventional circular-fin type condenser of household refrigerator. Because the low weight means low cost, it can have significant effects on the growth of related businesses if similar performance can be guaranteed. To check the possibility of the use of such a plate fin-tube condenser, experimental evaluations were performed in this study. Four different condensers including a conventional circular fin-tube condenser were used for the test. A well designed refrigerant supply system was used to supply similar conditions with a refrigerator, and the heat transfer rate and pressure drops of air side were measured precisely. As a result, the plate fin-tube type condensers showed a lower heat transfer rate of more than 13% than the conventional circular fin-tube type condenser, but the air side pressure drop was reduced and the heat transfer per unit weight was increased. Therefore, it shows the possibility of the use of a plate fin-tube type condenser after optimizing the air flow path and increasing the air flow to make a similar heat transfer rate.

A Study on the Manufacturing Process for High-finned Tube of Copper Pipe using Roll Forming Method (전조공법을 이용한 동관의 하이핀 튜브 제조 공정에 대한 연구)

  • Kim, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.111-115
    • /
    • 2006
  • High-finned tubes have good thermal conductivity and have better cooling efficiency than plain tubes or low-fined tubes due to bigger air contact area. During high-fined tubes are manufactured by roll forming, the main technique is illustrated to optimizing primary material(copper pipe), optimized die matrix designing technique for roll forming, control manufacturing speed to develop productivity etc. In this study, a roll forming system was developed in oder to produce high-finned tube. Also a multi-step roll forming die was designed & built to produce high-finned tube that has over 10 mm fin height. And then, roll forming test using copper pipe was performed to produce high-finned tube. Roll forming process for producing highfinned tube was optimized by analyzing and adjusting misrostructure, hardness, and surface roughness of roll formed high-fined tube.