• 제목/요약/키워드: Low energy house

검색결과 143건 처리시간 0.045초

An original device for train bogie energy harvesting: a real application scenario

  • Amoroso, Francesco;Pecora, Rosario;Ciminello, Monica;Concilio, Antonio
    • Smart Structures and Systems
    • /
    • 제16권3호
    • /
    • pp.383-399
    • /
    • 2015
  • Today, as railways increase their capacity and speeds, it is more important than ever to be completely aware of the state of vehicles fleet's condition to ensure the highest quality and safety standards, as well as being able to maintain the costs as low as possible. Operation of a modern, dynamic and efficient railway demands a real time, accurate and reliable evaluation of the infrastructure assets, including signal networks and diagnostic systems able to acquire functional parameters. In the conventional system, measurement data are reliably collected using coaxial wires for communication between sensors and the repository. As sensors grow in size, the cost of the monitoring system can grow. Recently, auto-powered wireless sensor has been considered as an alternative tool for economical and accurate realization of structural health monitoring system, being provided by the following essential features: on-board micro-processor, sensing capability, wireless communication, auto-powered battery, and low cost. In this work, an original harvester device is designed to supply wireless sensor system battery using train bogie energy. Piezoelectric materials have in here considered due to their established ability to directly convert applied strain energy into usable electric energy and their relatively simple modelling into an integrated system. The mechanical and electrical properties of the system are studied according to the project specifications. The numerical formulation is implemented with in-house code using commercial software tool and then experimentally validated through a proof of concept setup using an excitation signal by a real application scenario.

Emergy-Simulation Based Building Retrofit

  • Hwang, Yi
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.5-13
    • /
    • 2014
  • This paper introduces emergy(spelled with "m") that is a new environmental indicator in architecture, aiming to clarify conflicting claims of building design components in the process of energy-retrofit. Much of design practitioners' attention on low energy use in operational phases, may simply shift the lowered environmental impact within the building boundary to large consumption of energy in another area. Specifically, building energy reduction strategies without a holistic view starting from natural formation, may lead to the depletion of non-renewable geobiological sources (e.g. minerals, fossil fuels, etc.), which leaves a building with an isolated energy-efficient object. Therefore, to overcome the narrow outlook, this research discusses the total ecological impact of a building which embraces all process energy as well as environmental cost represented by emergy. A case study has been conducted to explore emergy-driven design work. In comparison with operational energy-driven scenarios, the results elucidate how energy and emergy-oriented decision-making bring about different design results, and quantify building components' emergy contribution in the end. An average-size ($101.9m^2$) single family house located in South Korea was sampled as a benchmark case, and the analysis of energy and material use was conducted for establishment of the baseline. Adoption of the small building is effective for the goal of study since this research intends to measure environmental impact according to variation of passive design elements (windows size, building orientation, wall materials) with new metric (emergy) regardless of mechanical systems. Performance simulations of operational energy were developed and analyzed separately from the calculation of emergy magnitudes in building construction, and then the total emergy demand of each proposed design was evaluated. Emergy synthesis results verify that the least operational energy scenario requires greater investment in indirect energy in construction, which clearly reveals that efficiency gains are likely to be overwhelmed by increment of material flows. This result places importance on consideration of indirect energy use underscoring necessity of emergy evaluation towards the environment-friendly building in broader sense.

저선량 ${\gamma}$선 조사가 배추종자의 발아와 수량에 미치는 효과 (Effects of low dose gamma radiation on the germination and yield components of chinese cabbage)

  • 김재성;김진규;이영근;백명화;김정규
    • 한국환경농학회지
    • /
    • 제17권3호
    • /
    • pp.274-278
    • /
    • 1998
  • 저선량 방사선에 의한 식물생육 촉진효과를 보고자 남방계 배추품종의 $1{\sim}5$년간 묵은 종자에 저선량 ${\gamma}$선을 $0.5{\sim}30.0Gy$까지 조사하여 온실과 포장에서 재배하여 그 생육상황을 조사한 결과는 다음과 같다. 배추 묵은 종자의 발아율과 유묘초장은 저선량 조사에 의해 향상되었으나 그 효과는 저장기간에 따라 달랐다. 저장기간이 5년차, 4년차, 3년차인 종자에게는 각각 4.0Gy, 1.0Gy, 0.5Gy 조사에서 발아율과 유묘초장 증가효과가 인정되었고 1년차와 2년차 종자에서 발아율 촉진효과는 없었으나 유묘초장은 증가하였다. 포장재배한 배추의 초장, 생체중, 직경으로 본 수량은 모든 저장종자의 4.0Gy와 8.0Gy 조사구에서 증가효과가 있었고 1년차와 2년차 종자에서는 20.0Gy와 30.0Gy에서도 수량증가 효과가 있었다.

  • PDF

폐기물 및 바이오매스 연료 사용시설의 효율적 에너지회수 및 온실가스 감축을 위한 운전조건에 관한 연구 (A study on the operation conditon of Effective Energy Recovery and Greenhouse gas Reduction by the facility using Waste / Biomass fuel)

  • 주원혁;여운호
    • 유기물자원화
    • /
    • 제28권1호
    • /
    • pp.83-95
    • /
    • 2020
  • 폐기물을 이용한 공공 자원회수시설, BIO-SRF를 이용한 민간 열원시설 열에너지를 효율적으로 활용함에 있어 투자 대비 회수 기간의 경제성 문제가 대두 되었고, 이로 인하여 기존에 통상적으로 설계 시공 운영 되었던 온도, 압력 조건 범위값을 넘어서 실현 가능한 최적의 온도, 압력 조건의 열원 설비가 필요하게 되었다. 본 연구에서는 국내에서 운영 중인 열원시설을 대상으로 온도와 압력 조건에 따른 모델링을 통하여 에너지 전력 생산량을 분석하였고, 도출된 에너지 전력 생산량을 통하여 온실가스 배출량 감축 특성을 연구하였다. 최종적으로 폐기물 및 바이오매스 연료를 이용한 열에너지 생산시설의 효율적인 에너지 활용을 위해서는 고온의 온도와 고압의 압력 생산시 효율적인 에너지 생산이 이루어지고 경제성 있는 투자와 회수로 이루어지리라 판단된다.

촉매연소를 이용한 수소버너의 작동 특성에 관한 연구 (A Study about an Operating Characteristic of Hydrogen Burner by Using Catalytic Combustion)

  • 김태영;박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-9
    • /
    • 2008
  • Human has faced in lack of fossil fuel and environmental crisis because of high population growth and development of industry. Hydrogen, unlimited amount and clean resource from water electrolysis, is remarkably known as the solution of recent energy crisis. One of the special characteristics of hydrogen is that a little amount of catalytic such as platinum and palladium makes nonflammable combustion, in other words catalyst combustion. Catalytic combustion fueled by hydrogen is environmentally friendly. This paper considers some comparisons of characteristic of catalytic combustion between a single layer of platinum catalyst, double layer of platinum and nickel catalysts and mixture of platinum and nickel catalysts. Some experiments of temperature distribution at different positions and characteristic of combustion in low temperature region were done in order to find an applicable possibility as a house-cooking burner.

단독주택용 지열원 열펌프 시스템 경제성 분석 (Economic Analysis of a Residential Ground-Source Heat Pump System)

  • 손병후;강신형;임효재
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.515-518
    • /
    • 2007
  • Because of their low operating and maintaining costs, ground-source heat pump(GSHP) systems are an increasingly popular choice for providing heating, cooling and water heating to public and commercial buildings. Despite these ad- vantages and the growing awareness, GSHP systems to residential sectors have not been adopted in Korea until recently. A feasibility study of a residential GSHP system was therefore conducted using the traditional life cycle cost(LCC) analysis within the current electricity price framework and potential scenarios of that framework. As a result, when the current residential electricity costs for running the GSHP system are applied, the GSHP system has weak competitiveness to conven- tional HVAC systems considered. However, when the operating costs are calculated in the modified price frameworks of electricity, the residential GSHP system has the lower LCC than the existing cooling and heating equipments. The calculation results also show that the residential GSHP system has lower annual prime energy consumption and total pollutant emissions than the alternative HVAC systems considered in this work.

  • PDF

제지산업의 탄소배출권 시장 대처방안 (Action Plans of Paper Industry Correspond to the Carbon Dioxide Emission Trading Market)

  • 성용주;김동섭;엄기증;이준우;김세빈;박관수
    • 펄프종이기술
    • /
    • 제44권1호
    • /
    • pp.43-51
    • /
    • 2012
  • Carbon dioxide emission trading market would play very important role in the global effort to cope with climate change. In KOREA, the energy consumption and geen house gas emission of various industry would be controlled by the low carbon-green growth law which was established at 2009. The paper industry as one of major industries in terms of energy consumption has been greatly required to prepare action plan for addressing this regulation and reduction of carbon dioxide emission. In this study, the current states of carbon dioxide emission trading market were analyzed in terms of practical responses of the paper industry. And the various action plans including CDM projects for paper industry were suggested.

Cyclic Behavior of Timber Column Concealed Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권2호
    • /
    • pp.123-133
    • /
    • 2013
  • This paper presents experimental and numerical tests on a recently developed timber column concealed base joint. This joint was designed to replace the wood-wood connection found in the post-and-beam structure of Hanok, the traditional Korean timber house. The use of metallic connectors provides an increased ductility and energy dissipation for a better performance under reversed loading, especially seismic. In this study, we investigate the performance of the joint under pseudo-static reversed cyclic moment loading through the study of its ductility and energy dissipation. We first perform experimental tests. Results show that the failure occurs in the metallic connector itself because of stress concentrations, while no brittle fracture of wood occur. Subsequent numerical simulations using a refined finite element model confirm these conclusions. Then, using a practical modification of the joint configuration with limited visual impact, we improve the ductility and energy dissipation of the joint while retaining a same level of rotational strength as the originally designed configuration. We conclude that the joint has a satisfying behavior under reversed moment loading for use in earthquake resistant timber structure in low to moderate seismicity areas like Korea.

블라인드 설치 위치에 따른 실내열환경 변화에 관한 연구 (A Study on the Change of Indoor Thermal Environment According to the location of Blinds)

  • 황덕수;이경희
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.113-118
    • /
    • 2011
  • In order to prevent incoming solar radiation, it is necessary to study about blinds' blocking out effects of heat that are installed at the balcony at an apartment house. To figure out the heating effects from the windows, a study for indoor thermal environment according to the location of blinds is also needed. In order to find out the changes of indoor thermal environment, we'll compare models of a house building with or without Venetian blinds: one place has an extended living room removing a balcony and another one has a normal balcony. The result is as follows. Without blinds, the place with an extended living room has benefits for saving heat compare to the place with a normal balcony. It's because the warm air heated by the incoming solar radiation moves into the living room through convection current and radiation which causes an increase of the indoor temperature. At an extended living room, the temperature difference from outside and inside, when blinds were installed inside, was $1.9^{\circ}C$ while it was $0.6^{\circ}C$ when the blinds were installed at outside of the balcony. It is evaluated that setting up the blind outside prevents much heat. At the space with a normal balcony, installing blinds at living room windows can save much heat compare to installing blinds at windows at the balcony. The indoor temperature was low when blinds were installed. It can be said that blinds block heat from the incoming solar radiation. Moreover, when blinds are installed, there is a big change of indoor temperature due to the radiation from the blinds' slat and convective activities in between the blinds and windows. This also has to be considered.

Hydrogen Production by the Photocatalystic Effects in the Microwave Water Plasma

  • Jang, Soo-Ouk;Kim, Dae-Woon;Koo, Min;Yoo, Hyun-Jong;Lee, Bong-Ju;Kwon, Seung-Ku;Jung, Yong-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.284-284
    • /
    • 2010
  • Currently, hydrogen has been produced by Steam Reforming or partial oxidation reforming processes mainly from oil, coal, and natural gas and results in the production of $CO_2$. However, these are influenced greatly on the green house effect of the earth. so it is important to find the new way to produce hydrogen utilizing water without producing any environmentally harmful by-products. In our research, we use microwave water plasma and photocatalyst to improve dissociation rate of water. At low pressure plasma, electron have high energy but density is low, so temperature of reactor is low. This may cause of recombination in the generated hydrogen and oxygen from splitting water. If it want to high dissociation rate of water, it is necessary to control of recombination of the hydrogen and oxygen using photocatalyst. We utilize the photocatalytic material($TiO_2$, ZnO) coated plasma reactor to use UV in the plasma. The quantity of hydrogen generated was measured by a Residual Gas Analyzer.

  • PDF