• 제목/요약/키워드: Low cycle fatigue test

검색결과 138건 처리시간 0.027초

음향방출법을 이용한 굽힘피로 손상된 소켓용접배관의 진단 및 감시 (Diagnosis and Monitoring of Socket Welded Pipe Damaged by Bending Fatigue Using Acoustic Emission Technique)

  • 김정석;오세웅;박익근
    • 비파괴검사학회지
    • /
    • 제28권4호
    • /
    • pp.323-330
    • /
    • 2008
  • 소구경 배관 소켓 용접부의 고주기 피로특성윽 평가하고 피로 균열의 발생을 음향방출법을 이용하여 실시간 모니터링 하였다. 스테인리스 316L강 시험편은 가스텅스텐아크용접 공정으로 루트부에 결함이 없는 시험편과 용입불량 결함이 있는 시험편으로 준비하였다. 피로파단은 고응력 일때는 토우부, 상대적으로 저응력일 때는 루트부에서 일어났다. 피로시험동안 음향방출 카운트가 급격히 증가하는 시점을 균열의 발생 싸이클 ($N_i$)로 정의하였고 방사선투과법과 전자현미경을 이용하여 피로균열 생성 싸이클 전과 후에서 균열을 확인하였다. 소켓용접배관의 굽힘피로 손상 진단 및 감시를 위해 균열의 존재와 파괴모드 그리고 균열의 발생 싸이클에 관한 연구를 수행하였다.

간호대학생의 우울, 피로, 신체존중감은 월경전 증상에 영향을 미치는가? (Do depression, fatigue, and body esteem influence premenstrual symptoms in nursing students?)

  • 이은주;양승경
    • 여성건강간호학회지
    • /
    • 제26권3호
    • /
    • pp.231-239
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate factors affecting premenstrual symptoms among nursing students, focusing on depression, fatigue, and body esteem. Methods: The participants were 145 nursing students at a university located in Changwon, Korea. Data were collected from November 2 to November 30, 2019 using self-reported structured questionnaires, and analyzed using descriptive statistics, independent t-test, analysis of variance, Pearson correlation coefficients, and multiple regression analysis. Results: The mean item score for premenstrual symptoms was 2.52±0.92, indicating a low level. The mean score for depression was 16.05±7.72, and 15.2% of participants were found to be moderately depressed and 9.7% severely depressed. The mean item score for fatigue was 4.84±0.84, indicating a moderate level, and body esteem was 2.94±0.44, indicating a moderate level. The premenstrual symptoms of nursing students showed a statistically significant correlation with depression (r=-.58, p<.001), fatigue (r=.33, p<.001), and body esteem (r=-.28, p<.001). Factors impacting premenstrual symptoms of nursing students were depression (β=.47, p<.001), dysmenorrhea (β=-.18, p=.009), menstrual cycle irregularity (β=.17, p=.013), and body esteem (β=-.14, p=.038). The total explanatory power of these variables was 41.0%. Conclusion: Findings from this sample of nursing students suggest that intervention programs to relieve premenstrual symptoms should focus on depression, menstrual cycle irregularity, dysmenorrhea, and body esteem.

변온 하중하에 있는 재료의 이력거동 예측을 위한 다층 모델에 관한 연구 (A Study on the Overlay Model for Description of Hysteresis Behavior of a Material under Non-isothermal Loading)

  • 김상호;서동훈;여태인
    • 한국자동차공학회논문집
    • /
    • 제18권3호
    • /
    • pp.133-142
    • /
    • 2010
  • The present work focuses on the characterization of material parameters of the Overlay(multilinear hardening) model for analyzing the non-isothermal cyclic deformation. In the previous study, all the parameters were especially based on the Overlay theories, and a simple method was suggested to find out the best material parameters for the isothermal cyclic deformation analysis. Based on the previous research this paper f dther improves the isothermal parameters and suggests how to apply the isothermal parameters to the non-isothermal conditions especially for the description of TMF(Thermo-Mechanical Fatigue) hysteresis behavior. The parameters are determined and calibrated using 400 series stainless steel test data in the reference papers. For the implementation into ABAQUS, a user subroutine is developed by means of ABAQUS/UMAT. The finite element results show good agreement with test for the case of uniaxial non-isothermal cyclic loading, signifying the proposed method can be used in the TMF analysis of the converter-inserted heavy duty muffler system and the stainless steel exhaust-manifold system which are to be done in our future research.

증기터빈 블레이드의 공진 방지를 위한 실험 연구 (An Experimental Study for Preventing the Resonance of Steam Turbine Blade)

  • 하현천;이동진;류석주
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.410-415
    • /
    • 2001
  • This paper describes an experimental analysis for improving the stability of blade failure due to the vibration resonance, which happens in the low-pressure steam turbine. Some cracks due to high cycle fatigue were found in the blades of a low-pressure turbine after long time operation. Impact test showed that such failure was mainly caused by the resonance. In other words, since one of the natural frequencies of the grouped blade is very close to the excitation frequency of the nozzle, the resonant vibration leads to a large amplitude of displacement and results in a large amount of stress that may cause fatigue failures in the blades. It is interesting that the blade failures occur only at blades neighboring with the nodal points of the natural vibration mode whose natural frequency is close to the nozzle passing frequency. The effective methods for increasing the reliability against the blade vibration are a heightening the fatigue limit of the blade using an advanced material and a removing the resonance away from the operating speed. It is well known that the removal of theresonance could be obtained by the installation of different types of shrouds, wires, and links between the blades as well as by the chance of the number of nozzles. In the present work, two kinds of modification for avoiding the resonance haute been considered; 1) slot-type finger, 2) long span cover. Full-scale mockup tests have been performed in order to confirm the verification for modification in the shop. Test results show that the use of long span cover is very useful to change the natural frequencies of the grouped blade and to avoid the resonance effectively.

  • PDF

316L 스테인리스 강의 고온 저주기 피로 수명식 개발 (Development of a New LCF Life Prediction Model of 316L Stainless Steel at Elevated Temperature)

  • 홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.521-527
    • /
    • 2002
  • In this paper, tensile behavior and low cycle fatigue behavior of 316L stainless steel which is currently favored structural material for several high temperature components such as the liquid metal cooled fast breeder reactor (LMFBR) were investigated. Research was performed at 55$0^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ since working temperature of 316L stainless steel in a real field is from 40$0^{\circ}C$ to $650^{\circ}C$. From tensile tests performed by strain controls with $1{\times}10^{-3}/s,\; l{\times}10^{ -4}/s \;and\; 1{\times}10/^{ -5}/ s $ strain rates at each temperature, negative strain rate response (that is, strain hardening decreases as strain rate increases) and negative temperature response were observed. Strain rate effect was relatively small compared with temperature effect. LCF tests with a constant total strain amplitude were performed by strain control with a high temperature extensometer at R.T, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and total strain amplitudes of 0.3%~0.8% were used and test strain rates were $1{times}10^{-2} /s,\; 1{times}10^{-3} /s\; and\; 1{times}10^{-4} /s$. A new energy based LCF life prediction model which can explain the effects of temperature, strain amplitude and strain rate on fatigue life was proposed and its excellency was verified by comparing with currently used models.

석출물과 전위에 기인한 초음파 비선형성 파라미터 (Ultrasonic Nonlinearity Parameter Due to Precipitate and Dislocation)

  • 김정석;박익근
    • 한국정밀공학회지
    • /
    • 제25권7호
    • /
    • pp.131-138
    • /
    • 2008
  • The microstructural effects on the ultrasonic nonlinearity were investigated in isothermally degraded ferritic 2.25Cr-1Mo steel and low cycle fatigued copper. The variation in ultrasonic nonlinearity (${\beta}/{\beta}_0$) was interpreted as resulting from microstructural changes supported by the electron microscopy and X-ray diffraction, in addition to the mechanical test (Victor's hardness and ductile-brittle transition temperature). The ultrasonic nonlinearity of 2.25Cr-1Mo steel increased abruptly in the initial 1,000 h of degradation, and then changed little due to the coarsening of carbide and precipitation of stable $M_6C$ carbide during isothermal degradation. The ultrasonic nonlinearity of copper increased with the fatigue cycles due to the evolution of dislocation cell substructure.

균열선단의 소성스트레치를 이용한 피로균열성장모델 (A model of fatigue crack growth based on plastic stretch at the crack tip)

  • 주영식;김재훈
    • 한국항공우주학회지
    • /
    • 제31권3호
    • /
    • pp.15-22
    • /
    • 2003
  • 피로균열성장모델을 유도하고 지연모델을 제안하였다. 피로균열성장모델은 피로균열선단의 소성변형으로 인하여 균열표면에 발생하는 잔류소성스트레치를 고려하고 있다. 균열 성장률은 균열선단 재료요소의 소성변형에너지와 누적피로손상으로부터 계산된다. 유도한 균열성장모델로부터 계산한 균열성장률은 AL6061-T651과 17-4PH 주강의 시험결과와 잘 일치하고 있다. 피로균열성장지연모델은 인장과대하중으로부터 생성된 잔류소성스트레치를 근거로 하고 있으며, 인장과대하중은 다음 하중 사이클의 소성변형률을 감소시킨다. Strip-yield모델을 이용하여 균열선단의 소성역을 계산하였다. 새로 제안된 지연모델은 인장과대하중하의 피로균열선장특성 및 지체지연 현상을 잘 기술하고 있다.

저온, 고압력용 강재 구조물의 용접부균열 발생과 그 대책에 관한 연구 (A study on the cracking mechanism of the welded parts in steel structures for the use of low temperature and high pressure)

  • 김영식;배차헌;구자영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제9권4호
    • /
    • pp.328-338
    • /
    • 1985
  • When the low temperature service steels are used as materials for welded structure, some problems-brittleness and weld cracking, etc.-occur in welded part due to the change of mechanical and metallurgical characteristics resulted from the thermal cycle during the welding procedure. In this study, the experiments were conducted to investigate the change of mechanical and metallurgical characteristics of the welded part for the low temperature and high pressure service steels. Moreover, the Static and Dynamic Implant Test Method was introduced to this study in order to find out the mechnism of weld cracking. In addition, the fracture toughnesses of welded bond were inspected under the various low temperature environments. Main results obtained are as follows; 1) The effect of the hydrogen on the fatigue characteristics of the weld bond can be estimated by the new self-contrived Dynamic Implant Test equipment. 2) The fine micro-structure and low hardness in the heat affected zone can be obtained by the small heat input multi-pass welding. 3) The susceptibility of the delayed cracking is largely affected by the condition of used electrode. 4) The transition temperature of the fracture surface in weld bond appears to be higher 20 .deg. C than that in base metal.

  • PDF

SPR 접합법을 이용한 Al-5052 인장-전단 시험편의 피로강도 (Fatigue Strength of Al-5052 Tensile-Shear Specimens using a SPR Joining Method)

  • 이만석;김택영;강세형;김호경
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.9-14
    • /
    • 2014
  • Self-piercing riveting(SPR) is a mechanical fastening technique which is put pressure on the rivet for joining the sheets. Unlike a spot welding, SPR joining does not make the harmful gas and $CO_2$ and needs less energy consumption. In this study, static and fatigue tests were conducted using tensile-shear specimens with Al-5052 plates for evaluation of fatigue strength of the SPR joints. During SPR joining process for the specimen, using the current sheet thickness and a rivet, the optimal applied punching force was found to be 21 kN. And, the maximum static strength of the specimen produced at the optimal punching force was 3430 N. During the fatigue tests for the specimens, interface failure mode occurred on the top substrate close to the rivet head in the most high-loading range region, but on the bottom substrate close to the rivet tail in the low -loading range region. There was a relationship between applied load amplitude $P_{amp}$ and lifetime of cycle N for the tensile-shear, $P_{amp}=3395.5{\times}N^{-0.078}$. Using the stress-strain curve of the Al-5052 from tensile test, the simulations for fatigue specimens have been carried out using the implicit finite element code ABAQUS. The relation between von-Mises equivalent stress amplitude and number of cycles was found to be ${\sigma}_{eq}=514.7{\times}N^{-0.033}$.

주기적 하중을 받는 SCH 40 3-Inch 탄소강관엘보의 소산에너지 기반의 손상지수 평가 (Damage Index Evaluation Based on Dissipated Energy of SCH 40 3-Inch Carbon Steel Pipe Elbows Under Cyclic Loading)

  • 김성완;윤다운;전법규;김성도
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권1호
    • /
    • pp.112-119
    • /
    • 2021
  • 지진하중으로 인한 배관계통의 파괴모드는 라체트를 동반하는 저주기 피로파괴이며 비선형 거동이 집중되고 파손이 발생하는 요소는 엘보인 것으로 나타났다. 본 연구에서는 저주기 피로에 의한 SCH 40 3인치 탄소강관엘보의 파괴기준을 정량적으로 표현하기 위하여 한계상태를 누수로 정의하고 면내반복가력실험을 수행하였다. 배관계통에서 지진하중에 취약한 요소인 탄소강관엘보에 대하여 모멘트-변형각의 관계를 이용한 손상지수를 나타내었으며 힘-변위의 관계를 이용하여 산정된 손상지수와 비교-분석하였다. 탄소강관엘보에 대하여 반복되는 외력에 의한 소산에너지에 기반을 둔 손상지수로서 누수가 발생한 한계상태를 정량적으로 표현하였다.