• 제목/요약/키워드: Low alkali

Search Result 445, Processing Time 0.031 seconds

Varietal and Locational Variation of Grain Quality Components of Rice Produced in Hilly and High Altitude Areas in Korea (중산간지와 고냉지산 쌀 형태 및 이화학적특성의 품종 및 산지간 변이)

  • Choi, Hae-Chune;Chi, Jeong-Hyun;Lee, Chong-Seob;Kim, Young-Bae;Cho, Soo-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.1
    • /
    • pp.27-37
    • /
    • 1994
  • To catch the relative importance of varietal and environmental variation in various grain quality components associated with palatability of cooked rice, grain appearance, milling recovery, several physicochemical properties of milled rice and texture or eating quality of cooked rice for rice materials of five japonica cultivars, produced at four locations of the mid-mountainous and alpine area of Korea in 1989, were evaluated and analyzed the obtained data. Highly significant varietal and locational variations were detected in 1000-grain weight, amylose content, K/Mg ratio, gelatinization temperature, peak viscosity, breakdown and setback viscosities as compared with variety x location interaction variation. Also, marked locational variations were recongnized in milling recovery from rough to brwon rice, alkali digestibility and protein content, and significant varietal variation was caught in stickiness /hardness ratio of cooked rice. The variety x location interaction variation was especially large in quality components of grain appearance and ripening, palatability of cooked rice and consistency viscosity. One thousand kernel weight was heaviest in Jinbuolbyeo and Odaebyeo, and the unfilled grain ratio was lowest in Jinbuolbyeo. Odaebyeo showed slightly' lower ratio of intact and clear milled rice because of more chalky rice kernels compared with other cultivars. Amylose content of Jinbuolbyeo and Sobaegbyeo was about 1% lower than that of others and K/Mg ratio of Odaebyeo was the lowest one among rice materials. Odaebyeo, Sobaegbyeo and Jinbuolbyeo revealed significantly low gelatinization temperature and setback viscosity while high peak and breakdown viscosities. Cholwon rice showed the greatest kernel weight, good grain filling but lowest ratio of intact and clear milled rice while Jinbu rices exhibited the highest milling recovery from rough to brown rice and ratio of sound milled rice. Amylose content of milled rice in Jinbu rices was about 2-3% lower than those in other locations. Protein content of polished rice was about 1% lower in rice materials of middle zone than those of southern part of Korea. K/Mg ratio of milled rice was highest in Jinbu rice and potassium content was slightly higher in the rice materials of middle region than in those of southern region. Alkali digestion value and gelatinization temperature of polished rice was markedly high in Jinbu rices as compared with other locations. Breakdown viscosity was hightest in Chlown rices and next higher with the order of Hwaso>Unbong>Jinbu rices, and setback viscosity was the quite contrary tendency with breakdown. The stickiness /hardness ratio of cooked rice was relatively higher value in Cholwon rices than in the others and the palatability of cooked rice was a little better in Unbong and Cholwon rices than in Jinbu and Hwaso rices, although variety x location interaction variation was large. The rice materials can be classified largely into two groups of Jinbu and the others by the distribution on the plane of 1st and 2nd principal components (about 60% of total informations) contracted from twelve grain quality properties closely associated with eating quality of cooked rice. Also, Jinbu and the other rices were divided into two and three rice groups respectively. Varietal variation of overall rice quality was smallest in Hwaso. The most superior rice group in overall quality evaluation included Odaebyeo produced at Cholwon, Unbong and Hwaso, and Sobaegbyeo grown at Unbong

  • PDF

Ecophysiological Characteristics of Chenopodiaceous Plants - An Approach through Inorganic and Organic Solutes - (명아주과 식물의 생리생태학적 특성 - 무기 및 유기용질을 통한 접근 -)

  • Choo, Yeon-Sik;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.397-406
    • /
    • 2000
  • In order to clarify the ecophysiological characteristics of Chenopodiaceae which widely distribute on saline and arid habitats, we collected 10 chenopodiaceous plant species, examined their inorganic and organic solute patterns, and confirmed several common physiological characteristics. In spite of high soil Ca/sup 2+/ contents, chenopodiaceous plants had a little water-soluble Ca within cells, but contained high contents of acid-soluble Ca particularly as a result of Ca-oxalate formation. These plant species also showed accumulation of inorganic ions such as K/sup +/, NO₃/sup -/ and Cl/sup -/, and Na/sup +/especially in saline habitats instead of K/sup +/ Meanwhile, with respect to nitrogen metabolism they retained high N contents in leaves, but showed very low amino acid contents. Additionally, they contained very little proline known to act as a cytoplasmic osmolyte. To ascertain whether this physiological characteristics in the field also can be found under controlled conditions, 7 chenopodiaceous plants (Atriplex gmelini, Corispermum stauntonii, Salicornia herbacea, Suaeda aspayagoides, Suaeda japonica, Chenopodium album var. centrorubrum, C. serotinum) were selected and cultivated under salt treatments. As well as field-grown plants, selected plant species showed similar solute pattern in growth experiment. In summary, the family of Chenopodiaceae represents the following physiological properties; high storage capacity for inorganic ions (especially alkali cations, nitrate and chloride), oxalate synthesis to maintain lower soluble Ca contents within cytoplasm, and low contents of amino acids. In addition to some characteristics mentioned above, the physiological plasticities of Chenopodiaceae which can properly regulate their ion and solute pattern according to soil conditions may enable its representative to grow in dry sand dune and salt marsh habitats.

  • PDF

Varietal Difference and Environmental Variation in Protein Content and/or Amino Acid Composition of Rice Seed (쌀의 단백질함량과 아미노산 조성의 품종간 차이와 환경변이)

  • Choi, Hae-Chune;Cho, Soo-Yeon;Kim, Kwang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.5
    • /
    • pp.379-386
    • /
    • 1990
  • Varietal difference of protein content in forty eight Korean recommended rice cultivars and environmental Variation in protein content of milled rice harvested at six sites of the middle and/or southern plain and four locations of mid-mountainous and/or alpine area in 1989 were investigated. Also, the composition of amino acid in milled rice was compared among three rice varieties: a high-protein japonica rice, Nongbaek, a high-protein Tongil-type rice, Yongjubyeo, and a low-protein japonica rice, Hwaseongbyeo. Korean recommended rice varieties showed 7.93% of average protein content with varietal variation from 5.5% to 10.2% for milled rice harvested in 1988, and 9.17% of mean protein content with the variation from 6.3% to 12.0% for milled rice harvested in 1989. Tongil-type rice was about 1% higher in protein content of milled rice than japonica. The low-protein japonica rice, Hwaseongbyeo exhibited lower content of essential amino acids per g of rice flour sample than the high-protein japoinica, Nongbaek and/or Tongil-type rice, Yongjubyeo, but the relative content of essential amino acids per 16.8g of nitrogen in milled rice of the former was not so different with those of the latters. Among amino acids the content of glutamic acid was highest and among essential amino acids the content of leucine was highest while methionine was lowest. The protein content of milled rice was negatively correlated with days from seeding to heading, K/Mg ratio, alkali digestion value(l-7) and amylose content, but it was positively correlated with translucency and magnesium content of milled rice. The protein content of milled rice harvested in the southern plain paddy field was about 1% higher compared with those harvested in the Middle plain. Also, the protein content of milled rice harvested in the southern mid-mountainous and alpine area was about 0.8% higher compared with those harvested in the resemble altitude area of the middle-northern part of Korea. The contribution of environmental variation to total in plain area was about 28.1% while that in mid-mountainous and alpine area was about 56.4%.

  • PDF

Petrological Characteristics and Origin of Volcaniclasts within the Massive Tuff Breccia Formation from Dokdo Island, Korea (독도 괴상 응회질 각력암층에서 나타나는 화산암편의 암석학적 특성과 기원)

  • Shim, Sung-Ho;Im, Ji-Hyeon;Jang, Yun-Deuk;Choo, Chang-Oh;Park, Byeong-Jun;Kim, Jung-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • Dokdo Island, Korea, is located in the East Sea belonging to back arc basin. In this study we examined petrology and geochemistry of massive tuffaceous breccia (MTB) from Dongdo (Eastern islet) and Seodo(Western islet), the two largest islands of Dokdo. Field studies and chemical analysis distinguish the MTB in Dongdo and Seodo. The Dongdo MTB (DMTB) is exposed up to 50 m on the ocean cliff and it has dominant basalt and trachybasalt with moderate amount of trachyte and scoria. On the other hand, Seodo MTB (SMTB), which is preserved between trachyte dike and trachyandesite, is composed of roughly equal amounts of basalt, trachybasalt and trachyte. The location of the islets were related to the source vent having in contact with underlying trachyte lava and differential pyroclastic deposits made them different characteristics. According to trace element analysis of trachytic volcanic clasts, the Ba concentration ranges from 66 to 103 ppm and Sr varies from 44 to 56 ppm in DMTB. However, Br and Sr in SMTB correspondingly showed relatively wide ranges: Br 785-1259 ppm and Sr 466-1230 ppm. These differential trends between DMTB and SMTB, along with the difference in P and Ti, indicate that the crystallization of alkali feldspar, feldspathoid, biotite, apatite and titanium took place differently. Nevertheless, DMTB and SMTB are similar in REE patterns and they are correspondingly characterized by high LREE, low HREE and similar $(La/Yb)_N$ values with 23.9-40.2 in DMTB and 27.4-32.9 in SMTB. These patterns suggest that Dongdo and Seodo might be originated from coeval magma suites. Dokdo island shows high concentrations of Ba, K and Rb. These signatures mark a result attributed to the mantle upwelling because the magma derived from the asthenosphere was metasomatized with subduction-related fluids.

Development of Value-Added Products Using Seaweeds (해조류 가공식품 및 부산물을 이용한 제품 개발)

  • Park, Yang-Kyun;Kang, Seong-Gook;Jung, Soon-Teck;Kim, Dong-Han;Kim, Seon-Jae;Pak, Jae-In;Kim, Chang-Hyeug;Rhim, Jong-Whan;Kim, Jung-Mook
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.133-141
    • /
    • 2007
  • There are produced more than 600,000 tons of seaweeds every year along the coast of the Korea. Jeonnam province, south-west coast area, of Korea is producing 93% of total amounts of seaweeds. The laver, sea mustard, and tangleweed maintain stability in the output and has been exported as a simple product processing through drying or salting. It was evaluated the low value-added products and limited the expansion for the consumption of seaweeds. The seaweeds contains 40-60% carbohydrate and structurally different compared with land plant. The dietary fiber from seaweeds has been known the function of facilitating the bowl movement, excretion the heavy metal in the body, lowering the blood cholesterol level, anti-coagulant of blood, and anticancer. Especially, brown algae including sea mustard, seaweed fusiforme, and tangleweed contains alginic acid, laminarin, mannitol, fucoidan which are lowering the blood cholesterol level, lowering blood pressure, and fusion of blood clot. Agar-agar, carrageenan, and porphyran compound in red algae are known to antimutagenicity and anticoagulant function. In spite of potential of seaweed as a main bio-resource, there are lack of research to facilitate the consumption with its functional properties and consumers are unsatisfied with simple processing products. Also, the seaweed by-product dump into the sea and cause pollution of the seawater. Therefore, there are needed the scheme to promote the consumption of seaweeds. The development of value-added products, finding functional properties from seaweeds, development the functional feed for animal using seaweed by-products, and utilization of unused algae for food or other industrial uses will increase fisherman's income as well as serve as an aid for the people health due to its functional properties. Using by-product of seaweed and unexploited seaweed are needed to development of bio-degradable food packaging material and functional feed for animal.

  • PDF

Changes of Physicochemical Properties and Fatty acid Compositions of Rough Rice Stored at Different Storage Temperatures and Periods (벼 정조저장 중 저장온도 및 저장기간에 따른 쌀의 이화학적 특성 및 지방산 조성의 변화)

  • Kim, Jeong-Ju;Baek, Man-Kee;Kim, Kwang-Su;Yoon, Mi-Ra;Kim, Gi-Young;Lee, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.413-426
    • /
    • 2014
  • This study was conducted to investigate changes of physicochemical properties and fatty acid compositions of rough rice stored at different storage temperatures and periods. So we analyzed texture, alkali digestion value (ADV), toyo glossiness value, pasting properties, fat acidity and fatty acid compositions of five rice varieties every 4 month on the condition of which rough rice had been stored at different temperatures (ambient and low temperature condition at $15^{\circ}C$) for 2 years. Hardness of cooked rice was increased by storage periods and cohesiveness of cooked rice was not considerably different among varieties according to storage temperatures and periods. ADV was significantly different among varieties and storage periods but not different with storage temperatures. Toyo glossiness value of cooked rice was continuously decreased from 4 months after storage regardless to storage temperature. The pasting properties were considerably affected by storage temperatures and periods of rough rice. Increase in peak viscosity, final viscosity and breakdown was observed but setback was decreased by storage periods. Fat acidity of brown rice was much higher than that of milled rice during storage of rough rice and tend to increase by storage period. Oleic acid among fatty acids of brown rice except Sindongin and Hitomebore tended to be decreased by storage periods and linoleic acid among fatty acids of brown rice of Hopum was decreased by storage periods. The contents of linoleinic acid and stearic acid among fatty acids of milled rice were comparatively decreased from 4 months after storage, whereas the content of palmitic acid tended to be increased by storage periods.

A Study on the Evolution of 3,4-DCA and TCAB in Some Selected Soils(Part II) -Degradation of $^{14}C-3,4-DCA\;and\;^{14}C-TCAB$- (수종토양중(數種土壤中)에서 3,4-DCA 및 TCAB의 변화(變化)에 관(關)한 연구(硏究)(제2보(劑二報)) -$^{14}C-3,4-DCA$$^{14}C-TCAB$ 의 분해(分解)-)

  • Lee, Jae-Koo;Fournier, J.C.
    • Applied Biological Chemistry
    • /
    • v.21 no.2
    • /
    • pp.71-80
    • /
    • 1978
  • In an attempt to elucidate the fate of 3,4-DCA and TCAB in various French soils, uniformly $^{14}C-ring-labeled$ 3,4-DCA and TCAB mere utilized and the following results obtained. 1) The rate of breakdown of $^{14}C-3,4-DCA$ into $^{14}CO_2$ was relatively higher in the early stage than that in the later stage. In 6 months of incubation in alkaline soil (pH 7.9), the rate was as high as 6.5% at dose 1 (1.5 ppm) and as low as 1.92% at dose 2(94 ppm), whereas in organic acid soil (pH 5.5) the rate was 4.91% at dose 1 and 4.24% at dose 2, respectively, without making any great difference between the two levels. 2) At dose 1, 47.70% of the initial radioactivity of $^{14}C-3,4-DCA$ was bound to soil in organic acid soil and 29.49% bound in alkaline soil, whereas at dose 2, 38.40% in organic acid soil and 20.30% in alkaline soil, respectively. 3) The amount of formation of $^{14}C-TCAB$ from $^{14}C-3,4-DCA$ seems to depend largely on the concentration of 3,4-DCA applied rather than on soil types. At dose 2, the amount was 50% of the total radioactivity extracted in organic acid soil and 30% in alkaline soil, corresponding to 1.8% and 1.4% of the initial radioactivity applied to soil, respectively. Cis-TCAB also seemed to be formed at dose 2 in both soils. Meanwhile, at dose 1, even though $^{14}C-TCAB$ was detected in trace on tlc and glc in both soils, the amount does not exceed 2 to 3% of the radioactivity extracted, corresponding to 0.05 to 0.1% of the initial radioactivity. 4) The rate of breakdown of $^{14}C-TCAB$ into $^{14}CO_2$ ranged from 0.05 to 0.20% in all the four soils. Most of the applied $^{14}C-TCAB$ remained intact after 3 months, not producing any detectable metabolites. 5) The fact that much more $^{14}C-TCAB$ was adsorbed to alkaline soil than to the other soils strongly indicates that in alkaline condition trans-isomer was converted tocisisomer which has the higher adsorption affinity than the former.

  • PDF

Extraction of Liberated Reducing Sugars from Rapeseed Cake via Acid and Alkali Treatments (산 및 알칼리 처리에 의한 유채박의 유리당 추출)

  • Jeong, Han-Seob;Kim, Ho-Yong;Ahn, Sye-Hee;Oh, Sei-Chang;Yang, In;Choi, In-Gyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1575-1581
    • /
    • 2011
  • Rapeseed cake, which is the organic waste remaining after rapeseed oil production, is readily available and considered an ecologically-friendly resource with very low cost and high dietary fiber content. This research was carried out for two reasons. First, it was done to analyze the liberated reducing sugar content of rapeseed cake. Second, it was done to investigate the effects on the sugar yield of the various concentrations of acidic and alkaline catalysts used for the hydrolysis of rapeseed cake and the concentrations of rapeseed cake in each catalyst. Several amounts of ground rapeseed cake, 0.5 g, 1 g, and 2 g, were put into 100 mL of catalysts such as sulfuric acid (0.5~2%), hydrochloric acid (0.5~2%), and sodium hydroxide (0.5~2%). Then they were hydrolyzed for 5 min at 121$^{\circ}C$. After hydrolysis, HPLC equipped with an RI detector was used to analyze liberated reducing sugars such as sucrose, glucose, galactose, fructose, and arabinose separated from rapeseed cake. The degradation rate of rapeseed cake was the highest in hydrochloric acid. As the catalyst concentrations used for hydrolysis of rapeseed cake increased, the degradation rate of rapeseed cake also significantly increased. Total reducing sugar content was the highest in hydrochloric acid, and it increased with the increase of catalyst concentrations. However, as the amount of rapeseed cake increased, the total reducing sugar content decreased, exceptionally sucrose in the case of sodium hydroxide.

Utilization of Wood Chips for Disposing of Swine Manure (목질칩의 축분뇨 정화재로의 이용)

  • Choi, In-Gyu
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.4
    • /
    • pp.203-210
    • /
    • 2001
  • In order to environmentally use wood chips manufactured from low valued forest resources by forest tendering, wood chips were used for the evaluation on chips characteristics, decomposition capability of organic wastes, and field experiment and determination of conditions for decomposer. Bioclusters manufactured by Cryptomeria japonica, commercially available wood chips in Japan, showed higher pore ratio, water reservation and water resistance, and higher cellulose content with lower hot water solubles than domestic wood chips. The useful size of wood chips for swine manure decomposition was 10 (length) ${\times}$ 5 (width) ${\times}$ 2 (thickness) mm, and cellulose contents and alkali solubles of Pinus densiflora and Populus tomentiglandulosa were similar to those of bioclusters. According to the decomposition ratio depending on wood species, it was ordered as Pinus densiflora > Pinus koraiensis > Cryptomeria japonica. The swine manure decomposition ratio depending on treatment hours by Pinus koraiensis was constant with the ratio of 15 to 16 g per hour by 1 kg of chip, indicating of daily swine decomposition amount of 390 kg by 1 ton of chips which was equal to the amount of daily swine manure production by 70 swines. Analyzing by long term used wood chips during 40 days treatment, the treated wood chips characteristically showed stable total nitrogen content, suitable pH, high accumulation of inorganic contents such as calcium, phosphorus, potassium and sodium, and no odor. During winter, the inner temperature of decomposer was kept at $43^{\circ}C$, but air bubble was occurred due to high pH and viscosity of swine manure. The most appropriate mixing ratio between wood chips and swine manure was 1 versus 2 or 3, and at more than ratio 1 versus 3, ammonia gas was caused because of anaerobic fermentation status by high moisture content of wood chips. The mixing interval of decomposer was 3 mins. per hour for the best swine decomposition.

  • PDF

Clay Mineral Distribution in the Yellow Sea Surface Sediments: Absolute Mineral Composition and Relative Mineral Composition (황해 표층퇴적물의 점토광물 분포; 절대광물조성과 상대광물조성)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Dong-Hyeok;Shin, Kyung-Hoon;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.289-295
    • /
    • 2008
  • We studied the difference between the clay mineral content in the bulk marine sediments (absolute clay mineral composition) and clay mineral content only in total clay minerals (relative clay mineral composition) of the Yellow Sea marine sediments, and correlated the relationship between their distribution patterns. We used 56 Yellow Sea Surface sediments collected at the second cruise in 2001 of KORDI, and determined the absolute mineral composition using the quantitative X-ray diffraction analysis. Yellow Sea surface sediments consist of primary rock forming minerals including quartz (average 44.7%), plagioclase (15.9%), alkali feldspar (10.0%), hornblende (2.8%) together with clay minerals (illite 15.3%, chlorite 2.6% and kaolinite 1%) and carbonates (calcite 1.7%, aragonite 0.6%). Absolute clay mineral contents are very high in the region extending from the southeast of Sandong Peninsula to the southwest of Jeju Island. In contrast, it is very low along the margin of the Yellow Sea. Such distribution patterns of absolute clay mineral content are very similar to those of fine-grained sediments in the study area. The average relative clay mineral composition of illite, chlorite, and kaolinite is respectively 80.3%, 14.9% and 4.8%. The distribution pattern of relative mineral composition shows very different phenomenon when compared with those of absolute mineral composition, and also do not exhibit any positive relationship with that of fine-grained sediments in which clay mineral composition is abundant. Therefore, we suggest that the relative clay mineral compositions and their distribution patterns must be used very carefully when interpreting the origin of sediment provenance.