• Title/Summary/Keyword: Low Vibration

Search Result 2,171, Processing Time 0.029 seconds

Studies on Engneering Properties of Coal Ash Obtained as Industrial Wastes (산업폐기물(産業廢棄物)로 발생(發生)되는 석탄회(石炭灰)의 토질력학적(土質力學的) 특성(特性)에 관한 연구(硏究))

  • Chun, Byung Sik;Koh, Yong Il;Oh, Min Yeoul;Kwon, Hyung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.115-123
    • /
    • 1990
  • The purpose of this study was to examine the uses of coal ash as a type of construction material. The methods of examination were chemical anlysis, soil laboratory test and the soil vibration test. Materials used were coal ash obtained as a by-product from 5 thermal power plants in Yongdong, Yongwol, Sochon(anthracite coal) and in Samchonpo and Honam (bituminous coal). Over 70% of the coal ash consisted of silica and alumina. The fly ash grain size showed a uniform distribution from fine-sand to silt, and that of the bottom ash showed from sand to gravel. The specific gravity and density of the coal ash were low. The long term strength increased gradually due to the self-setting property resulting from pozzolanic activity. The shear strength was higher than that of general soil. Cohesion and optimum moisture content of anthracite coal ash were higher than bituminous coal ash, whereas the maximum dry density was higher in bituminous coal ash. The coal ash dynamic Young's modulous curve range was similar to that of general soil. Of the results from the soil vibration test by car-running, the size relative acceleration level in the ash pond was higher than that of natural ground, but the damping ratio was lower than that of natural ground near the ash pond. The coal ash has more advantageous engineering properties than general soil with particles of the same size. For example, the California Bearing Ratio of the bottom ash at both Yongdong and Yongwol was 77~137%. Therefore we expect that if further study is done, coal ash can be used as a construction material when reclaiming seashore, construction embankments, road construction, making right-weight aggregate, or as a general construction material.

  • PDF

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

A Study on the Development of Ultra-precision Small Angle Spindle for Curved Processing of Special Shape Pocket in the Fourth Industrial Revolution of Machine Tools (공작기계의 4차 산업혁명에서 특수한 형상 포켓 곡면가공을 위한 초정밀 소형 앵글 스핀들 개발에 관한 연구)

  • Lee Ji Woong
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.119-126
    • /
    • 2023
  • Today, in order to improve fuel efficiency and dynamic behavior of automobiles, an era of light weight and simplification of automobile parts is being formed. In order to simplify and design and manufacture the shape of the product, various components are integrated. For example, in order to commercialize three products into one product, product processing is occurring to a very narrow area. In the case of existing parts, precision die casting or casting production is used for processing convenience, and the multi-piece method requires a lot of processes and reduces the precision and strength of the parts. It is very advantageous to manufacture integrally to simplify the processing air and secure the strength of the parts, but if a deep and narrow pocket part needs to be processed, it cannot be processed with the equipment's own spindle. To solve a problem, research on cutting processing is being actively conducted, and multi-axis composite processing technology not only solves this problem. It has many advantages, such as being able to cut into composite shapes that have been difficult to flexibly cut through various processes with one machine tool so far. However, the reality is that expensive equipment increases manufacturing costs and lacks engineers who can operate the machine. In the five-axis cutting processing machine, when producing products with deep and narrow sections, the cycle time increases in product production due to the indirectness of tools, and many problems occur in processing. Therefore, dedicated machine tools and multi-axis composite machines should be used. Alternatively, an angle spindle may be used as a special tool capable of multi-axis composite machining of five or more axes in a three-axis machining center. Various and continuous studies are needed in areas such as processing vibration absorption, low heat generation and operational stability, excellent dimensional stability, and strength securing by using the angle spindle.

Vision-Based Dynamic Motion Measurement of a Floating Structure Using Multiple Targets under Wave Loadings (다중 표적을 이용한 부유식 구조물의 영상 기반 동적 응답 계측)

  • Yi, Jin-Hak;Kim, Jin-Ha;Jeong, Weon-Mu;Chae, Jang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.19-30
    • /
    • 2012
  • Recently, vision-based dynamic deflection measurement techniques have significant interests and are getting more popular owing to development of the high-quality and low-price camcorder and also image processing algorithm. However, there are still several research issues to be improved including the self-vibration of vision device, i.e. camcorder, and the image processing algorithm in device aspect, and also the application area should be extended to measure three dimensional movement of floating structures in application aspect. In this study, vision-based dynamic motion measurement technique using multiple targets is proposed to measure three dimensional dynamic motion of floating structures. And also a new scheme to select threshold value to discriminate the background from the raw image containing targets. The proposed method is applied to measure the dynamic motion of large concrete floating quay in open sea area under several wave conditions, and the results are compared with the measurement results from conventional RTK-GPS(Real Time Kinematics-Global Positioning System) and MRU(Motion Reference Unit).

Study of Examples for Air Bag Non-deployment Including Rear Collision and Failure Phenomenon by Damage of Control Parts in Vehicle Air Bag (자동차 에어백의 제어부품 불량에 의한 고장현상 및 후방 추돌에 관련된 에어백 미전개에 대한 사례 연구)

  • Lee, Il Kwon;Kim, Young Gyu;Moon, Hak Hook
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.102-106
    • /
    • 2012
  • The purpose of this paper is to study the failure cases in relation to system of Air Bag in vehicle happened in the field. In the first example, it was separated the soldering parts connected the wire pin between air bag module and clock spring of air bag. Whenever the pin shake by the car's vibration, the driver verified the malfunction phenomenon appeared air bag warning lamp on instrument panel in front of driver's seat. in car inside room. The second example, it verified the warning lamp lighting phenomenon of air bag by produced the circuit plate non-contacting of single an element in air bag electronic control unit. The third example, it verified the light of air bag warning indicator lamp by separated with soldering parts connecting inner pin and resistance terminal of seat belt pretensioner using passenger seat. The fourth example, when the passenger car crash a back of truck, the former bumper get jammed under the latter as the roof height of car low less than that. Therefore, the impact of Car's collision verified that don't transfer with body frame of vehicle because of no attachment impact sensor in it.

Structural Design And Analysis of Haeundae Doosan We've The Zenith (해운대 두산 위브 더 제니스 구조설계)

  • Park, Ki-Hong;Park, Suk-Jin
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.93-98
    • /
    • 2008
  • Haeundae Doosan We've The Zenith project is adjacent to Suyoung-bay, now it is in the process of excavation and foundation work. The main use of the tower is residence which height is 300m and 80 floor, the highest residential reinforced concrete building through the Orient. It is comprised of 3 high- rised buildings and 1 low-rised building, the basement is 230m wide and 200m length sized mass structure. The lateral resistance system is acted effectively against the lateral load and satisfactorily against the wind vibration by the 4 direction extension of the center core wall($700{\sim}800mm$ thickness) and reinforced concrete column set around the slab. Flat-plate slab system(250mm thickness) is adjusted for the slab system and it enables effective work process and shortening the working term by minimizing the ceiling height and not needing to install perimeter beam and drop panel. The strength and serviceability of the structure is able to be monitored and estimated constantly through the health monitoring system during the construction and after the construction.

  • PDF

Approximate Model of Viscous and Squeeze-film Damping Ratios of Heat Exchanger Tubes Subjected to Two-Phase Cross-Flow (2 상 유동장에 놓인 열 교환기 튜브에 작용하는 점성과 압착막 감쇠비의 어림적 해석 모델)

  • Sim, Woo Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.97-107
    • /
    • 2015
  • An analytical model was developed to estimate the viscous and squeeze-film damping ratios of heat exchanger tubes subjected to a two-phase cross-flow. Damping information is required to analyze the flow-induced vibration problem for heat exchange tubes. In heat exchange tubes, the most important energy dissipation mechanisms are related to the dynamic interaction between structures such as the tube and support and the liquid. The present model was formulated considering the added mass coefficient, based on an approximate model by Sim (1997). An approximate analytical method was developed to estimate the hydrodynamic forces acting on an oscillating inner cylinder with a concentric annulus. The forces, including the damping force, were calculated using two models developed for relatively high and low oscillatory Reynolds numbers, respectively. The equivalent diameters for the tube bundles and tube support, and the penetration depth, are important parameters to calculate the viscous damping force acting on tube bundles and the squeeze-film damping forces on the tube support, respectively. To calculate the void fraction of a two-phase flow, a homogeneous model was used. To verify the present model, the analytical results were compared to the results given by existing theories. It was found that the present model was applicable to estimate the viscous damping ratio and squeeze-film damping ratio.

The Physicochemical and Optical Characteristics of FeaSibCcHd Films (FeaSibCcHd 박막의 물리·화학 및 광학적 특성)

  • Kim, Kyung-soo;Jean, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • When the preparation method of iron silicide films possess the annealing process, the interfacial state of the films is not fine. The good quality films were obtained as the plasma was used without annealing processing. Since the injected precursors were various active species in the plasma state, the organic compound was contained in the prepared films. We confirmed the formation of Fe-Si bonds as well as the organic compound by Fe and Si vibration mode in Raman scattering spectrum at $250cm^{-1}$ and Ft-IR. Because of epitaxy growth being progressed by the high energy of plasma at the low temperature of substrate, iron silicide was epitaxially grown to ${\beta}$-phase that had lattice structure such as [220]/[202] and [115]. Band gap of the prepared films had value of 1.182~1.174 eV and optical gap energy was shown value of 3.4~3.7 eV. The Urbach tail and the sub-band-gap absorptions were appeared by organic compound in films. We knew that the prepared films by plasma were obtained a good quality films because of being grown single crystal.

  • PDF

Structural Properties of MO-SiO$_2$(M=Zn, Sn, In, Ag, Ni) by Sol-Gel Method (졸겔법으로 제조된 MO-$SiO_2$(M=Zn,Sn,In,Ag,Ni)의 구조특성)

  • Sin, Yong-Uk;Kim, Sang-U
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.603-608
    • /
    • 2001
  • $MO-SiO_2$ (M = Zn, Sn, In, Ag, Ni) binary silica gels were synthesized by sol-gel method and their structural change with the kind of metal ions was characterized by XRD, FT- IR and $^{29}$Si-NMR. Although X-ray analysis showed partial recrystallization of $AgNO_3$ in $Ag-SiO_2$gel, crystalline phase formed by the bonding between metal ion and the silica matrix didn't appear in all $MO-SiO_2$ gels. The FT-IR analysis showed that Zn, Sn and in partially formed Si-O-M bonding in silica matrix and made an shift of absorption peak to by Si-O-Si symmetrical vibration. In addition, $^{29}Si-NMR$ studies showed that Zn, Sn and In didn't affect sol-gel process of silica and were linked with non-bridging oxygen of the linear silica structure, which formed imperfect network because of low temperature sol-gel process. Ag and Ni make a role of catalysis on sol-gel process, resulting in densifying the silica network structure.

  • PDF

Earthquake Simulation Tests of A 1:5 Scale Gravity Load Designed 3-Story Reinforced Concrete Frame (중력하중 설계된 1:5 축소 3층 철근콘크리트 골조의 지진모의실험)

  • 이한선;우성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.241-252
    • /
    • 1998
  • The objective of the research stated herein is to observe the actual responses of a low-rise nonseismic moment-resisting reinforced concrete frame subjected to varied levels of earthquake ground motions. First, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used and the model was manufactured according to the similitude law. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelations (PGAs) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The lateral accelerations and displacements at each story and local deformations at the critical reginos of the structure were measured. The base shear was measured by using self-made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the change in the natural period and damping ratio of the model. The test data on the global and local behaviors are interpreted. The model showed the linear elastic behavior under the Taft N21E motion with the PGA if 0.12g, which represents the design earthquake in Korea. The maximum base shear was 1.8tf, approximately 4.7 times the design base shear. The model revealed fairly good resistance to the higher level of earthquake simulation tests. The main components of its resistance to the high level of earthquakes appeared to be 1) the high overstrength, 2) the elongation of the fundamental period, and 3) the minor energy dissipation by inelastic deformations. The drifts of the model under these tests were approximately within the allowable limit.