• Title/Summary/Keyword: Low Torque

Search Result 933, Processing Time 0.034 seconds

Speed Control Of The Magnet Gear-Based Speed Reducer For Non-contact Power Transmission (비접촉 동력 전달을 위한 마그네트 기어 기반 감속기의 속도 제어에 관한 연구)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.380-388
    • /
    • 2016
  • Using the magnet gear, it is possible to transmit power without mechanical contact. As the drive shaft in a magnet gear-based speed reducer system is isolated from the drive shaft, the system is a two-inertia resonance system that should cope with an external load with the limited air-gap stiffness. On the other hand, the drive shaft or low-speed side is controlled only by the torque of the drive shaft through an air-gap, and the excessive oscillation or the slip can then be generated because of an abrupt disturbance that is different from the general mechanical gear system. Therefore, the disturbance loaded at the low speed side should be measured or estimated, and considered in the control of the driving shaft. This paper proposes a novel full-state feedback controller with a reduced-order observer for the speed reducer system using a magnet gear with a unified harmonic modulator. The control method was verified by simulation and experiment. To estimate the load at the low speed side, a novel observer was designed, in which the new state variable is introduced and the new state equation is formulated. Using a full-state feedback controller including the observer, the test result against disturbance was compared with two D.O.F PI speed controllers. The pole slip was compensated within relatively a short time, and the simulation result about the estimated variable shows a similar tendency to the test result. The test results showed that the magnet gear-based reducer can be applied to an accurate servo system.

Vulcanization and Mechanical Properties of High Molecular Weight Slyrene-Butadiene Rubber/Low Molecular weight Styrene-Butadiene Rubber Mixtures (고분자량 스티렌-부타디엔 고무와 저분자량 스티렌-부타디엔 고무 혼합물의 가황과 기계적 물성)

  • Lee, Hwa-Woo;Kim, Byeong-Cheol;Hong, Suk-Pyo;Lee, Dai-Soo
    • Elastomers and Composites
    • /
    • v.34 no.2
    • /
    • pp.121-127
    • /
    • 1999
  • Characteristics of high molecular weight styrene-butadiene rubber(HM-SBR)/low molecular weight styrene-butadiene rubber(LM-SBR) mixtures were studied to investigate how to modify the processability and the mechanical properties of styrene-butadiene rubber (SBR). Mooney viscosity of the HM-SBR/LM-SBR mixtures and torque increase due to the vulcanization decreased by increasing the LM-SBR content of the mixtures. Shore A hardness and rebound properties were decreased by increasing the LM-SBR content of the mixtures. It was found that the value of tan ${\delta}$ of the mixtures in rubbery state was increased, while glass transition temperatures of the vulcanized blends were constant by increasing the LM-SBR content of the mixtures. It was postulated that the decrease of Mooney viscosity by increasing the LM-SBR content of the blends was due to plasticizing effects of the LM-SBR and the increased polydispersity of the mixtures. Change of mechanical properties of the vulcanized HM-SBR/LM-SBR mixtures was attributed to the decreased crosslink densities of the mixtures by increasing the LM-SBR content of the mixtures.

  • PDF

The Influences of Pulsed Electromagnetic Field Treatment Following Experimentally Induced Delayed-Onset Muscle Soreness in Biceps Brachii (펄스자기장이 위팔 두갈래근의 지연성 근육통에 미치는 영향)

  • Kang, Sun-Young;Park, Joo-Hee;Jeon, Hye-Seon;Lee, Hyun-Sook
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.11-19
    • /
    • 2013
  • Delayed onset muscle soreness (DOMS) is a painful condition that arises from exercise-induced muscle damage after unaccustomed physical activities. Various therapeutic interventions have been applied to reduce the intensity and duration of DOMS-related symptoms. Recently, pulsed electromagnetic field (PEMF) intervention has been introduced as an alternative noninvasive treatment for DOMS. This randomized, double-blind, placebo-controlled experiment was conducted to examine the effects of PEMF therapy on DOMS in elbow flexors at 24, 48, and 72 hours after the experimental DOMS induction. Thirty healthy volunteers ($23{\pm}2.4$ yrs, $175{\pm}5.7$ cm, and $74{\pm}7.8$ kg) participated in this study. Each was randomly assigned to a PEMF or placebo group. On the first day, DOMS was induced in the elbow flexors by repeated isokinetic motions at low ($60^{\circ}/s$) and fast ($120^{\circ}/s$) speeds in all subjects. Thereafter, the PEMF group received 15-min daily treatment with a PEMF device. The placebo group received sham treatment of the same duration. Overall, PEMF application was more effective than the sham treatment in reducing the physiological symptoms associated with the DOMS including perceived soreness, median frequency, and electromechanical delay of the surface electromyography. In addition, median frequency and isokinetic peak torque of the PEMF group recovered to the pre-DOMS induction level earlier than the placebo group. In conclusion, this study suggests that PEMF can be applied as a new recovery strategy in reducing DOMS symptoms. Further experiments are required to examine the effect of the PEMF treatment on different types of exercise conditions and to determine the optimal treatment dosage and duration in a real clinical setting.

A Study on Steady-State Performance Analysis and Dynamic Simulation for Medium Scale Civil Aircraft Turbofan Engine (I) (중형항공기용 터보팬엔진의 정상상태 성능해석 및 동적모사에 관한 연구 (I))

  • 공창덕;고광웅;기자영
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.47-55
    • /
    • 1998
  • Steady-state and transient performance for the medium scale civil aircraft turbofan engine was analyzed. Steady-state performance was analyzed on maximum take-off condition, maximum climb condition, and cruise condition. At 90%RPM of the low pressure compressor, the partload performance was economized. The transient performance was analyzed with cases of the step increase, the ramp increase, the ramp decrease, and the step increase and ramp decrease for the input fuel flow. For the transient performance analysis, work matching between compressor and turbine was needed. Modified Euler method was used the integration of residual torque in work matching equation. At all flight condition, the overshoot of the high pressure turbine inlet temperature was appeared in the step and ramp increase case, and the surge of high pressure compressor was appeared in the step increase case and the ramp increase case within 5.5 seconds of maximum climb condition.

  • PDF

Development of aerodynamic noise prediction technique for high efficiency and low noise design of unmanned aerial vehicle propeller (멀티로터형 무인항공기 프로펠러의 고효율 및 저소음 설계를 위한 공력 소음 예측 기법 개발)

  • Gwak, Doo Young;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.89-99
    • /
    • 2017
  • Multi-rotor type UAV (Unmanned Aerial Vehicle)s are expanding their applications not only for military purposes but also for private industries such as aerial photography and unmanned delivery vehicles. For wider use of unmanned aerial vehicles, studies should be carried out to improve aerodynamic efficiency and reduce noise of propellers, which can be achieved based on techniques of predicting aerodynamic performance and noise in a given environment. In this study, aerodynamic and noise prediction techniques were developed for a small unmanned aerial vehicle propeller, and it was verified by comparing it with actual measurement results. Thrust and torque due to the change of r/min and the frequency spectral prediction at a given position secured the reliability of the prediction method, which provides a basis for the shape design of the propeller.

Numerical Simulation of the Evolution and Structure of a Single Vortex in Reacting and Non-reacting Jet Flow Fields (반응 및 비반응 제트 유동장에서 단일 와동의 전개 및 구조에 대한 수치모사)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Chang-Eon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.28-37
    • /
    • 2004
  • A two-dimensional direct numerical simulation was performed to investigate the evolution and vortical structure of a single vortex in reacting and non-reacting jet flow fields. A predictor-corrector-type numerical scheme with a low Mach number approximation was used, and a two-step global reaction mechanism was adopted as the combustion model. Through the comparisons of single vortex behaviors in reacting and non-reacting jet flow fields, it was found that the evolution characteristics and vortical structure of the single vortex were significantly influenced by a outer vortex that was generated from the buoyance effect as well as the chemical heat release. Furthermore, it was also identified that the differences of the vortical structure in reacting and non-reacting jet flow fields were mainly attributed to the thermal expansion, Baroclinic torque and buoyance effect.

Mechanical Characteristics of GF/recycled PET Thermoplastic Composites with Chopped Fiber According to Cross Section (단면형상에 따른 GF/rPET 열가소성 복합재료의 물리적 특성 연구)

  • Kim, Ji-hye;Lee, Eun-soo;Kim, Myung-soon;Sim, Jee-hyun
    • Textile Coloration and Finishing
    • /
    • v.29 no.4
    • /
    • pp.239-246
    • /
    • 2017
  • Recently fiber-reinforced thermoplastic composites have attracted great interest from industry and study because they offer unique properties such as high strength, modulus, impact resistance, corrosion resistance, and damping reduction which are difficult to obtain in single-component materials. The demand for plastics is steadily increasing not only in household goods, packaging materials, but also in high-performance engineering plastic and recycling. As a result, the technology of recycling plastic is also attracting attention. In particular, many paper have studied recycling systems based on recycled thermoplastics. In this paper, properties of Glass Fiber Reinforced Thermoplastic(GFRTP) materials were evaluated using recycled PET for injection molding bicycle frame. The effect on thermal and mechanical properties of recycled PET reinforced glass chop fiber according to fiber cross section and fiber content ratio were studied. And it was compared void volume and torque energy by glass fiber cross section, which is round section and flat section. Mechanical characteristics of resulting in GF/rPET has been increased by increasing fiber contents, than above a certain level did not longer increased. And mechanical properties of flat glass fiber reinforced rPET with low void volume were most excellent.

Roll/Yaw Momentum Management Method of Pitch Momentum Biased Spacecraft (피치 모멘텀 바이어스 위성시스템의 롤/요축 모멘텀 제어방식)

  • Rhee, Seung-Wu;Ko, Hyun-Chul;Jang, Woo-Young;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.669-677
    • /
    • 2009
  • In general, the pitch momentum biased system that induces inherently nutational motion in roll/yaw plane, has been adapted for geosynchronous communications satellites. This paper discusses the method of roll attitude control using yaw axis momentum management method for a low earth orbit(LEO) satellite which is a pitch momentum biased system equipped with only two reaction wheels. The robustness of wheel momentum management method with PI-controller is investigated comparing with wheel torque control method. The transfer function of roll/yaw axis momentum management system that is useful for attitude controller design is derived. The disturbance effect of roll/yaw axis momentum management system for attitude control is investigated to identify design parameters such as magnitude of momentum bias and to get the insight for controller design. As an example, the PID controller design result of momentum management system for roll/yaw axis control is provided and the simulation results are presented to provide further physical insight into the momentum management system.

Development of Coaxial Propeller Test Facility and Experimental Study on Hover Performance Characteristics for Drone (드론용 동축 프로펠러 시험장치 개발 및 제자리비행 성능특성에 대한 실험적 연구)

  • Song, Youn-Ha;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • In this paper, the test facility for coaxial propellers at low Reynolds developed and validated by measured data. The test equipment was designed to measure the hovering performance of propellers according to distances between the upper/lower propellers. Thrust, torque, rotational speed, vibration, and amperage of upper and lower propellers can be measured separately. The data acquisition system was built to collect signals of sensors, and LabVIEW software was used to control the motor and collect the signal. The hover performance tests of single propellers were preceded for the facility validation, and then the performance values of coaxial propellers were measured according to distances and diameter differences between the upper/lower propellers. The results showed that the high efficiency is achieved at 20%~30% distance between the upper propeller and lower one. The configuration that the upper propeller has shorter diameter than the lower one has the highest efficiency than other configuration.

Quantitative Assessment of the Fastening Condition and the Crack Size with Using Piezoceramic(PZT) Sensors (압전소자를 이용한 볼트토크 및 크랙의 정량적평가에 관한 연구)

  • Hong, Dong-Pyo;Hong, Yong;Wang, Gao-Ping;Han, Byeong-Hee;Kim, Young-Moon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.603-606
    • /
    • 2006
  • We present a study on the development of a practical and quantitative technique for the assessment of the structural health condition with using piezoceramic(PZT) sensors. The electro-impedance-based technique with the PZT patches is very sensitive for evaluation of the incipient and small damage in a high frequency range, and however the commonly traditional modal analysis method is effective only for considerably larger damages in low frequency range. The paper presents the technique in detecting and characterizing real-time damage on the specimen that is an aluminum plate fastened with bolts and nuts by different torques and as well a plate with a crack. By using the special arrangement of the PZT sensors, the required longitudinal wave is generated through the specimen. A large number of experiments are conducted and the different conditions of the specimens, i.e. the location and extent of loosening bolts, and the plate with a crack are simulated. respectively. Since fixing and loosening the loosened bolt is controlled by a torque wrench, we can control exactly the experiment of the different torques. Compared with the simulated healthy condition, we can find whether or not there is a damage in the specimen with using an impedance analyzer with the PZT sensors. Several indices are discussed and used for assessing the different simulated damages. As for the location of bolt loosening, the RMSD is found to be the most appropriate index for numerical assessment and as well the RMSD shows strongly linear relationship for assessing the extent of the bolt loosening, and the frequency peak shift ${\Delta}F$ is used to assess the cracked plate. The possibility of repeatability of the pristine condition signatures is also presented and the appropriate frequency range and interval are uniquely selected through large numbers of experiments.

  • PDF