• Title/Summary/Keyword: Low Temperature Storage House

Search Result 18, Processing Time 0.027 seconds

DEVELOPMENT OF AN AUTOMATIC ENVIRONMENTAL CONTROL SYSTEM FOR LOW TEMPERATURE STORAGE HOUSE USING INTERNET

  • Chung, H.;Yun, H.S.;Lee, W.O.;Lee, K.H.;Cho, Y.K.;Park, W.K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.676-683
    • /
    • 2000
  • For high quality storage of agricultural products, temperature, humidity and gas conditions in a storage house should be controlled properly. But most of the low temperature storage house is depending on temperature control. This study aimed to develop an automatic control system for low temperature storage house that can control storage conditions such as temperature, humidity and $CO_2$ gas concentration. The developed system alarms the user, by telephone or beeper, when abnormal condition has occurred. The farmer can also monitor the inside condition of warehouse in his residence, by Internet. From the results of the performance test, the temperature and relative humidity in the warehouse is controlled within the range of ${\pm}0.5^{circ}C$ and ${\pm}2%$, respectively.

  • PDF

The Major Postharvest Disease of Onion and Its Control with Thymol Fumigation During Low-Temperature Storage

  • Ji, Sang Hye;Kim, Tae Kwang;Keum, Young Soo;Chun, Se-Chul
    • Mycobiology
    • /
    • v.46 no.3
    • /
    • pp.242-253
    • /
    • 2018
  • Onion (Allium cepa L.) is one of the major vegetable crops in Korea that are damaged and lost by pathogenic fungal infection during storage due to a lack of proper storage conditions. The aim of this study was to determine an appropriate control measure using thymol to increase the shelf life of onions. To control fungal infections that occur during low-temperature storage, it is necessary to identify the predominant fungal pathogens that appear in low-temperature storage houses. Botrytis aclada was found to be the most predominant fungal pathogen during low-temperature storage. The antifungal activity of the plant essential oil thymol was tested and compared to that of the existing sulfur treatments. B. aclada growth was significantly inhibited up to 16 weeks with spray treatments using a thymol solution. To identify an appropriate method for treating onions in a low-temperature storage house, thymol was delivered by two fumigation treatment methods, either by heating it in the granule form or as a solution at low-temperature storage conditions (in vivo). We confirmed that the disease severity was reduced up to 96% by fumigating thymol solution compared to the untreated control. The efficacy of the fumigation of thymol solution was validated by testing onions in a low-temperature storage house in Muan, Jeollanam-do. Based on these results, the present study suggests that fumigation of the thymol solution as a natural preservative and fungicide can be used as an eco-friendly substitute for existing methods to control postharvest disease in long-term storage crops on a commercial scale.

The Effects of Storage Amount and Ventilator Size on the Quality of Ginger During Cellar Storage (저장량과 환기구크기가 움저장 생강의 저장성에 미치는 영향)

  • 최윤희;이상복
    • Food Science and Preservation
    • /
    • v.2 no.1
    • /
    • pp.195-202
    • /
    • 1995
  • An experiment was conducted to develop the simple methods of ginger storage which decrease the weight reduction and maintain good quality of ginger during the cellar storage. The stored boxes with volume of 0.03㎥ and ventilator diameter of 3, 4, 5cm was hurried under the ground(60, 80, 100cm) in the green house. During the cellar storage at the 100cm depth the average temperature and relative humidity in the stored box were remained in 11.7~16.3$^{\circ}C$ and 73%, respect. The higher storage amount and smaller size of ventilator size increased the CO2 concentration in the stored box, and the concentration in the stored box with 50% storage quantity rate and 3cm ventilator diameter size was more than 10% for about 2 months from early Feburary. The decay rate of ginger during the cellar storage increased with higher amount of storage quantity and smaller size of ventilator. The CO2 concentration was low and remained relatively constant with the deeper location of stored box under the ground, and the decay rate was lower in the deeper stored box. Germination rate increased with the deeper location of stored box, and with the lower storage quantity and larger ventilator size. The germination rate was low in the higher decay rate box. Weight loss, total sugar and moisture contents of ginger were decreased, while crude fiber and ash were increased during the storage.

  • PDF

Postharvest Handling and Marketing Management for Making High Salability of Sweetpotatoes (상품성 제고를 위한 고구마 수확 후 관리 및 출하기술)

  • Jeong, Byeong-Choon
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2001.06a
    • /
    • pp.51-64
    • /
    • 2001
  • The qualities including taste of sweetpotato stored during the winter which can display in the spring market in Korea are affected by availability of storage for the roots. In order to make high storage availability of sweetpotato, the postharvest handlings should be done thoroughly from the moment of harvest until shipping them to the market. A lot of procedures that must be handled carefully for improving postharvest management are as follows; digging, trimming, gathering, putting in storage containers, carrying them from field to house, curing, storing, washing, drying, selecting marketable roots, packing and shipping to the market, etc.. Sweetpotatoes have a high moisture content, and a relatively thin and delicate skin, and are sensitive to chilling, so careless postharvest handling can lead to both quantitative and qualitative losses which may be extremely high in some circumstances. From now on research has concentrated on the improvement of postharvest conditions to increase yield and lower disease rates. Storage, which makes sweetpotatoes available through out the year, benefits both the producer and the consumer. Seven very important points must be needed in order to get the best quality marketable roots in the storing of sweetpotatos : $\circled1$The storage house must be clean and sanitary, $\circled2$The crop must be harvested before the first frost to avoid low-temperature injury, $\circled3$Particular care must be taken to avoid cutting, bruising, or other injuries of the sweetpotatoes during digging, picking up, grading, placing in containers, and moving to the storage house, $\circled4$Select sound, disease-free roots for storage $\circled5$Sweetpotatoes should be stored in properly stacked containers $\circled6$Cure immediately after harvest, preferably at 32∼33$^{\circ}C$ and 90 to 95 percent relative humidity for 4 to 7 days, After curing the temperature should be reduced to 13$^{\circ}C$ to 16$^{\circ}C$ by ventilating the storage with outside air. $\circled7$Store at 12$^{\circ}C$ to 14$^{\circ}C$ and a relative humidity of 80 to 85 percent. Storage houses should be located on suitable sites and should be tightly constructed and insulated so that temperature and humidity will be uniform. Sweetpotatoes are usually not washed and graded, and lately sometimes washed, graded, waxed, before being shipped to market. Consumer packaging of sweetpotatoes in paper boxes(10-15kg) or film bags is done mainly to aid marketing. The shelf life of washed roots in consumer packs in only 1 to 2 weeks. Weight loss of roots during marketing is much less in perforated film bags than in mesh and paper bags. Perforation of 0.8 to 1kg polyethylene bags with about six 6mm holes is essential ; to lower the internal relative humidity and avoid excessive sprouting, rooting, and dampness. Development and use of better postharvest handling with good storage facilities or marketing methods can minimize sweetpotate losses and has an effect of indirectly increasing productivity and farmer’s income.

Analysis of fruit growth and post-harvest characteristics of hydroponically grown 'K3' melons (Cucumis melo L.) harvested at different days after fruit setting and stored at low temperature

  • Jung-Soo Lee;Ju Youl Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.341-355
    • /
    • 2022
  • This research was to examine the differences in post-harvest quality of melons depending on the harvest time after fruit setting. Musk melon cultivar 'K3' plants were grown in glass house conditions with a hydroponic system, and the fruits were harvested at 50, 60, and 70 days after fruit setting. The post-harvest characteristics of melons stored at 7℃ were measured over 32 days. The harvested fruits at 50, 60, 70 days after fruit setting did not differ significantly in weight, height, or size. Solid sugar content was highest in the fruits harvested at 70 days after fruit setting, but firmness, L* value, and respiration rate were highest in the fruits harvested at 50 days after fruit setting. When the harvested melons were stored at 7℃, 'K3' melons responded differently according to the harvest days after fruit setting. The major changes during storage of 'K3' melons can be summarized as follows: Firmness, respiration, moisture content, and general appearance index during storage were highest in the melons harvested at 50 days after fruit setting, but soluble solid content, fresh weight loss, and sensory evaluation were high in the melons harvested at 60 and 70 days after one. During storage at 7℃, there were no significant differences in the appearance of 'K3' melons harvested at different periods after fruit setting, but difference in soluble solid content and taste were noted. It is recommended that the fruit of 'K3' melon plants be harvested about 60 days after fruiting to provide consumers with the highest quality for taste and for storage.

The hybrid heat pump with solar energy for heating (태양열이용 하이브리드 난방 열펌프시스템)

  • Kim, Ji-Young;Ko, Gwang-Soo;Kang, Byung-Chan;Park, Youn-Cheol
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.173-178
    • /
    • 2005
  • Recently. we interested in renewable energy due to cost increase of the crude oil, etc. In this study solar assisted hybrid heat pump system that uses the solar heat and air as heat source analyzed by experimentally.'rho system could runs at dual mode. One is thermal storage mode of solar energy at day time and the other is heat pump mode with low temperature air as heat source at night time. In case of setting temperature over the limited range. high temperature water heated at the solar energy collecting tubes supplied to the storage tank. As results. it is founded that the heat pump performance Is higher than general heat pump which using the only air as a heat source. The developed system could be used as main healing equipment for the panel heating for the residential house.

  • PDF

Study on the palstic green houses depending on regional weather conditions (지역기후특성을 고려한 비닐온실에 관한연구)

  • Woo, Byung Kwan;Lee, Sung;Kim, Se Hwan;Kim, Sam Yeol
    • KIEAE Journal
    • /
    • v.9 no.5
    • /
    • pp.39-46
    • /
    • 2009
  • Most Plastic Green Houses in Korea are made according the European weather condition, which lead to have very low solar energy efficiency. Moreover, the function of green houses, as well as the structure of them, has not changed for Korean weather condition. Therefore, the structure and function of them should adopt the regional weather condition in order to improve the energy efficiency. This paper investigates the current plastic green housesin Korea, and presents an alternative for improving the energy efficiency. The elements of green houses were investigated. When using a partial opaque insulation with a thermal storage body, the difference of indoor air temperature became 20C during daytime, and 5C during night, which will save massive fossil fuels.

An Evaluation of the Solar Thermal Performance of the Solar/Geo Thermal Hybrid Hot Water System for a Detached House (단독주택용 태양열/지열 융복합시스템의 태양열 급탕성능 평가)

  • Baek, Namchoon;Han, Seunghyun;Lee, Wang Je;Shin, Ucheul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.581-586
    • /
    • 2015
  • In this study, an analysis was performed on the performance of the solar water heating system with geo-thermal heat pump for a detached house. This system has a flat plate solar collector ($8\;m^2$) and a 3 RT heat pump. The heat pump acts as an auxiliary heater of the solar water heating system. These systems were installed at four individual houses with the same area of $100\;m^2$. The monitoring results for one year are as follows. (1) The average daily operating time of the solar system appeared to be 313 minutes in spring (intermediate season), and 135 minutes and 76 minutes in winter and summer respectively. The reason for the short operating time in summer is the high storage temperature due to low water heating load. The high storage temperature is caused by a decrease in collecting efficiency as well as by overheating. (2) The geothermal heat pump as an auxiliary heater mainly operates on days of poor insolation during the winter season. (3) Despite controlling for total house area, hot water consumption varies greatly according to the number of people in the family, hot water usage habits, etc. (4) The yearly solar fraction was 69.8 to 91.5 percent, which exceeds the maximum value of 80% as recommended by ASHRAE. So the solar collector area of $8\;m^2$ appeared to be somewhat greater for the house with an area of $100\;m^2$. (5) The observed annual efficiency of solar systems was relatively low at 13.5 to 23.6%, which was analyzed to be due to the decrease in thermal efficiency and the overheating caused by a high solar fraction.

A Study on Zero Energy House Model of Housing Complex (주택 단지 제로 에너지 하우스 모델에 관한 연구)

  • Huh, Myung Hoi;Shin, shung jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.121-126
    • /
    • 2020
  • In many parts of the world, climate warming has caused tremendous environmental disasters to repeat every year. Overuse of fossil fuels, the main source of energy, has affected the global environment, destroying the global ecosystem and depleting resources. To overcome this, efforts to reduce carbon emissions through the development of renewable energy are being actively studied at home and abroad. Already, new technologies are being reported abroad to reduce carbon emissions. Zero Energy House is a model that reduces low carbon emissions and energy use due to the use of high-density materials for high-heated materials, and can live in real life by receiving the minimum required energy through renewable energy. Although the government is trying to apply this in Korea, it is difficult to become common because of the lack of economic feasibility. The purpose of this study is to study models that can zero carbon emissions, which are eco-friendly elements, secure construction economy of zero energy house by using ventilation system, heat exchanger and energy storage system for public use, and attach automation system to window opening/closing to maintain indoor temperature.