• Title/Summary/Keyword: Low Temperature Reaction

Search Result 1,367, Processing Time 0.032 seconds

Analysis of cure behavior of low temperature curing liquid silicone rubber (LSR) for multi-material injection molding (이중사출 성형을 위한 저온 경화 액상실리콘고무 (LSR)의 경화 거동 분석)

  • Hyeong-min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.1-5
    • /
    • 2023
  • In multi-material injection molding, since two or more materials with different process conditions are used, it is essential to maximize process efficiency by operating the cooling or heating system to a minimum. In this study, Liquid silicone rubber (LSR) that can be cured at a low temperature suitable for the multi-material injection molding was selected and the cure behavior according to the process conditions was analyzed through differential scanning calorimetry (DSC). Dynamic measurement results of DSC with different heating rate were obtained, and through this, the total heat of reaction when the LSR was completely cured was calculated. Isothermal measurement results of DSC were derived for 60 minutes at each temperature from 80 ℃ to 110 ℃ at 10 ℃ intervals, and the final degree of cure at each temperature was calculated based on the total heat of reaction identified from the Dynamic DSC measurement results. As the result, it was found that when the temperature is lowered, the curing start time and the time required for the curing reaction increase, but at a temperature of 90 ℃ or higher, LSR can secure a degree of cure of 80% or more. However, at 80 ℃., it was found that not only had a relatively low degree of curing of about 60%, but also significantly increased the curing start time. In addition, in the case of 110 ℃, the parameters were derived from experimental result using the Kamal kinetic model.

  • PDF

Reaction Dynamics of CH3 + HBr → CH4 + Br at 150-1000 K

  • Ree, Jongbaik;Kim, Yoo Hang;Shin, Hyung Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2473-2479
    • /
    • 2013
  • The kinetics of the radical-polar molecule reaction $CH_3+HBr{\rightarrow}CH_4+Br$ has been studied at temperatures between 150 and 1000 K using classical dynamics procedures. Potential energy surfaces constructed using analytical forms of inter- and intramolecular interaction energies show a shallow well and barrier in the entrance channel, which affect the collision dynamics at low temperatures. Different collision models are used to distinguish the reaction occurring at low- and high-temperature regions. The reaction proceeds rapidly via a complex-mode mechanism below room temperature showing strong negative temperature dependence, where the effects of molecular attraction, H-atom tunneling and recrossing of collision complexes are found to be important. The temperature dependence of the rate constant between 400 and 1000 K is positive, the values increasing in accordance with the increase of the mean speed of collision. The rate constant varies from $7.6{\times}10^{-12}$ at 150 K to $3.7{\times}10^{-12}$ at 1000 K via a minimum value of $2.5{\times}10^{-12}\;cm^3\;molecule^{-1}\;s^{-1}$ at 400 K.

MPS eutectic reaction model development for severe accident phenomenon simulation

  • Zhu, Yingzi;Xiong, Jinbiao;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.833-841
    • /
    • 2021
  • During the postulated severe accident of nuclear reactor, eutectic reaction leads to low-temperature melting of fuel cladding and early failure of core structure. In order to model eutectic melting with the moving particle semi-implicit (MPS) method, the eutectic reaction model is developed to simulate the eutectic reaction phenomenon. The coupling of mass diffusion and phase diagram is applied to calculate the eutectic reaction with the uniform temperature. A heat transfer formula is proposed based on the phase diagram to handle the heat release or absorption during the process of eutectic reaction, and it can combine with mass diffusion and phase diagram to describe the eutectic reaction with temperature variation. The heat transfer formula is verified by the one-dimensional melting simulations and the predicted interface position agrees well with the theoretical solution. In order to verify the eutectic reaction models, the eutectic reaction of uranium and iron in two semi-infinite domains is simulated, and the profile of solid thickness decrease over time follows the parabolic law. The modified MPS method is applied to calculate Transient Reactor Test Facility (TREAT) experiment, the penetration rate in the simulations are agreeable with the experiment results. In addition, a hypothetical case based on the TREAT experiment is also conducted to validate the eutectic reaction with temperature variation, the results present continuity with the simulations of TREAT experiment. Thus the improved method is proved to be capable of simulating the eutectic reaction in the severe accident.

The Effect of Carbon on the Hot Corrosion of lron by Sulfur Containing Environment. (철의 고온 황화부식에 미치는 탄소의 영향)

  • 최성필;강성군;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.21 no.2
    • /
    • pp.53-67
    • /
    • 1988
  • The high temperature corrosion of Fe-C alloys were studied at I atm SO gas in the temperature range 500~80$0^{\circ}C$ by means of a thermogravimetric analysis. The Na2SO4 induced high tempwrature corrosion rate was also measured at atm O2 gas under above the temperature renge. The reaction products were identified with the aid of X-ray diffraction technique, and micostruction of the alloy/scale interface was observed with a optical microscope and SEM. The experimental results were disussed by the themodeynamic calcutions. Under above the experimental condition. the reaction rates decrbon with increasing carbon content. The transfer of Fe ion was limited by a residue of carbon precipitated at alloy scale interface due to the oxidation of Fe-C alloys at alloy surface. The effect of cold working on reaction rate was different between the Fe containing low carbon and Fe-C Alloy containing carbon above 0,73 wt%. In a cold worked iron containing low carbon content, the crystallization of metal surface leads to the poor adherence between the alloy and the cavity formed between the alloy and scale. The outward diffusion of ion through the scale is estimated to be hindered by the cavity formed between the scale, consequently decreasing reaction rate. In the case Fe-C containing carbon above 0.73 Wt% alloy, the reaction rate was little affected by cold working, because the effect of content on reaction rats is greater than the effect of cold working.

  • PDF

A Study of the Temperature Elevation Due to the Pre-flame Reaction in a Spark-Ignition Engine Using CARS Technique (CARS 측정 기술을 이용한 스파크 점화 기관에서의 화염 전 화학 반응에 의한 온도 변화에 관한 연구)

  • 최인용;전광민;박철웅;한재원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.9-16
    • /
    • 2001
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark- ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressures. Significant heating by pre-flame reaction in the end gas zone was observed in the late part of compression stroke under both knocking and non-knocking conditions. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached look. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

A Study of the Temperature Elevation Due to the Pre-flame Reaction Using CARS (CARS 를 이용한 스파크 점화 기관에서의 화염 전화학 반응에 의한 온도 변화에 관한 연구)

  • Choi, In-Yong;Chun, Kwang-Min;Park, Chul-Woung;Hahn, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.85-92
    • /
    • 2000
  • End-gas temperatures were measured using CARS technique in a conventional DOHC spark-ignition engine fueled with PRF80. The measured pressure data were analyzed using band pass filter method. The measured CARS temperatures were compared with adiabatic core temperatures calculated from measured pressure. Significant heating by pre-flame reaction in the end gas was observed in the late part of compression stroke under both knocking and non-knocking condition. CARS temperatures measured at 10 crank angle degree before knock occurrence was higher than adiabatic core temperatures. These results indicate that there exist some exothermic reactions in low pressure and temperature region. CARS temperatures began to be higher than the adiabatic core temperature when the end-gas temperatures reached 700 K. The temperature elevation due to the pre-flame reaction correlated better with CARS temperature than with cylinder pressure.

  • PDF

Interfacial Layer and Thermal Characteristics in Ni-Zn-Cu Ferrite and Pb(Fe1/2Nb1/2)O3 for the Low Temperature Co-sintering (저온 동시소결을 위한 Ni-Zn-Cu 폐라이트와 Pb(Fe1/2Nb1/2)O3에서의 열적 거동 및 계면층 특성)

  • Song, Jeong-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.873-877
    • /
    • 2007
  • In order to apply a complex multilayer chip LC filter, this study has estimated the interfacial reaction and coupling properties of dielectric materials $Pb(Fe_{1/2}Nb_{1/2})O_3$ and Ni-Zn-Cu ferrite materials through low-temperature co-sintering (LTCS). PFN powders were fabricated using double calcinated at $700^{\circ}C$ and then $850^{\circ}C$. While the perovskite phase rate was found to be 91 %, after heat treatment at $900^{\circ}C$ for 6h, the perovskite phase rate and density exhibited a value of 100 % and 7.46$g/cm^3$, respectively. The PFN/Ni-Zn-Cu ferrite, PFN/CUO (or $Pb_2Fe_2O_5$) and ferrite/CuO (or $Pb_2Fe_2O_5$) were mechanically coupled through interfacial reactions after the specimen was co-sintered at $900^{\circ}C$ for 6 h. No intermediate layer exists for the mutual coupling reaction. This result indicates the possibility of low-temperature co-sintering without any interfacial reaction layer for a multilayer chip LC filter.

Reaction Kinetics for the Synthesis of Oligomeric Poly (lactic acid)

  • Yoo Dong Keun;Kim Dukjoon;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • A low-molecular-weight poly(lactic acid) was synthesized through the condensation reaction of L-lactic acid. The effects that the catalyst and temperature have on the reaction rate were studied to determine the optimum reaction conditions. The reaction kinetics increased with temperature up to $210^{\circ}C$, but no further increase was observed above this temperature. Among a few selective catalysts, sulfuric acid was the most effective because it maximized the polymerization reaction rate. Reduction of the pressure was another important factor that enhanced this reactions kinetics.

Optimization of Reaction Conditions for the High Purity Hydrogen Production Process Using By-Product Gases in Steel Works (철강산업 부생가스를 이용한 고순도 수소 제조 공정의 반응 조건 최적화)

  • CHOI, HANSEUL;KIM, JOONWOO;KIM, WOOHYOUNG;KIM, SUNGJOONG;KOH, DONGJUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.621-627
    • /
    • 2016
  • Low-priced hydrogen is required in petrochemical industry for producing low-sulfur oil, and upgrading low-grade crude oil since environmental regulations have been reinforced. Steel industry can produce hydrogen from by-product gases such as Blast Furnace Gas (BFG), Coke Oven Gas (COG), and Linze Donawitz Gas (LDG) with water gas shift (WGS) reaction by catalysis. In this study, we optimized conditions for WGS reaction with commercial catalysts by BFG and LDG. In particular, the influence on activity of gas-hourly-space-velocity, and $H_2O/CO$ ratios at different temperatures were investigated. As a result, 99.9%, and 97% CO conversion were showed with BFG, and LDG respectively under $350^{\circ}C$ High Temperature Shift (HTS), $200^{\circ}C$ Low Temperature Shift (LTS), 3.0 of $H_2O/CO$, and $1500h^{-1}$ of GHSV. Furthermore, 99.9% CO conversion lasted for 250 hours with BFG as feed gas.

Geometric Characteristics of Methane Steam Reforming with Low Temperature Heat Source (중저온 열원에 의한 메탄 수증기 개질의 형상 인자에 따른 특성)

  • Shin, Gahui;Yun, Jinwon;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.793-799
    • /
    • 2016
  • In a hybrid fuel cell system, low-temperature reforming technology, which uses waste heat as a heat source, is applied to improve system efficiency. A low temperature reformer is required to optimize geometry in low thermal conditions so that the reformer can achieve the proper methane conversion rate. This study analyzed internal temperature distributions and the reaction patterns of a reformer by considering the change of the shape factor on the limited heat supply condition. Unlike the case of a high temperature reformer, analysis showed that the reaction of a low temperature reformer takes place primarily in the high temperature region of the reactor exit. In addition, it was confirmed that the efficiency can be improved by reducing the GHSV (gas hourly space velocity) or increasing the heat transfer area in the radial direction. Through reacting characteristic analysis, according to change of the aspect ratio, it was confirmed that a low temperature reformer can improve the efficiency by increasing the heat transfer in the radial direction, rather than in the longitudinal direction.