• Title/Summary/Keyword: Low Reynolds Number Turbulence Model

검색결과 123건 처리시간 0.03초

회전하는 정사각단면 $90^{\circ}$곡관내 난류유동에 관한 수치해석적 연구 (Study on the Analysis of Turbulent Flow in a Rotating Square Sectioned $90^{\circ}$ Curved Duct)

  • 이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2206-2222
    • /
    • 1995
  • In this study, the characteristics of the three-dimensional turbulence flow in a rotating square sectioned 90.deg. bend were investigated by numerical simulation. And a dimensionless number, Coriolis force ratio, primarily subjected to the feature of the flow in the rotating 90.deg. bend was obtained as a result of one-dimensional theory. In the simulation study, low Reynolds number ASM developed by Kim(1991) in the square sectioned 180.deg. bend flow was modified in order to consider the rotational effects in the testing flows. In the near wall region of low Reynolds number, four turbulence models were employed and compared in order to find the most appropriate model for the analysis of the rotating 90.deg. bend flow. By comparison of the results with the experimental data, it is shown that low Reynolds number Algebraic Stress Model with rotating terms reflects most correctly the rotational effects. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotation affect directly both the mean motion and the turbulent fluctuations. Their actions on the mean flow are to induce a secondary motion while their effects on turbulence are to modify the pressure strain.

저 레이놀즈수 유동에서 Flapping-Airfoil의 수치적 공력특성 연구 (Numerical Study on Aerodynamic Characteristics of Flapping-Airfoil in Low Reynolds Number Flows)

  • 이정상;김종암;노오현
    • 한국항공우주학회지
    • /
    • 제30권4호
    • /
    • pp.44-52
    • /
    • 2002
  • 비정상, 비압축성 Navier-Stokes 코드를 이용하여, 저 레이놀즈수 유동에서 flapping 운동을 하는 익형의 공력특성을 수치해석적인 방법으로 연구하였다. 비정상 유동장의 효율적인 계산을 위하여, 개발된 코드는 MPI 프로그래밍 기법을 이용하여 병렬처리 되었으며, 난류 유동장의 계산을 위해 2방정식 난류모델의 하나인 k-$\omega$ SST 모델을 적용하였다. 익형의 3가지 운동모드 즉, pitching, plunging, flapping과 주파수 및 진폭의 변화 그리고 두께와 캠버의 변화에 의한 공력특성을 살펴보았고, 이를 위해 NACA4자 계열의 익형을 이용하였다. 해석 결과는 실험치와 비교하여 보았을 때 잘 일치하였으며, 각 운동모드에서의 공기역학적 특성을 파악할 수 있었다.

저레이놀즈수 k-ε 난류모형에 의한 축대칭 모형기관 실린더내 유동의 수치해석 (Numerical Simulation of In-Cylinder Flow for the Axi-symmetric Model Engine by Low Reynolds Number k-ε Turbulence Model)

  • 김원갑;최영돈
    • 한국자동차공학회논문집
    • /
    • 제2권1호
    • /
    • pp.38-50
    • /
    • 1994
  • To improve the efficiency of internal combustion engines, it is necessary to understand mixed air-fuel in-cylinder flow processes accurately at intake and compression strokes. There is experimental and numerical methods to analyse in-cylinder flow process. In numerical method, standard $k-{\varepsilon}$ model with wall function was mostly adopted in in-cylinder flow process. But this type model was not efficiently predicted in the near wall region. Therefore in the present study, low Reynolds number $k-{\varepsilon}$ model was adopted near the cylinder wall and standard $k-{\varepsilon}$ model in other region. Also QUICK scheme was used for convective difference scheme. This study takes axisymmetric reciprocating model engine motored at 200rpm with a centrally located valve, incorporated 60 degree seat angie, and flat piston surface excluding inlet port. Because in-cylinder flow processes are undergoing unsteady and compressible, averaged cylinder pressure and inlet velocity at arbitrary crank angle are determined from thermodynamic analytic method and incylinder states at that crank angle are iteratively determined from the numerical analytic method.

  • PDF

점탄성 유체의 난류 해석을 위한 수정된 $k-{\varepsilon}$ 난류모델 개발 및 혈류역학에의 적용 (DEVELOPMENT OF A MODIFIED $k-{\varepsilon}$ TURBULENCE MODEL FOR VISCO-ELASTIC FLUID AND ITS APPLICATION TO HEMODYNAMICS)

  • 노경철;유홍선
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.1-8
    • /
    • 2010
  • This article describes the numerical investigation of turbulent blood flow in the stenosed artery bifurcation under periodic acceleration of the human body. Numerical analyses for turbulent blood flow were performed with different magnitude of periodic accelerations using a modified turbulence model which was considering drag reduction of non-Newtonian fluid. The blood was considered to be a non-Newtonian fluid which was based on the power-law viscosity. In order to validate the modified $k-{\varepsilon}$ model, numerical simulations were compared with the standard $k-{\varepsilon}$ model and the Malin's low Reynolds number turbulence model for power-law fluid. As results, the modified $k-{\varepsilon}$ model represents intermediate characteristics between laminar and standard $k-{\varepsilon}$ model, and the modified $k-{\varepsilon}$ model showed good agreements with Malin's verified power law model. Moreover, the computing time and computer resource of the modified $k-{\varepsilon}$ model were reduced about one third than low Reynolds number model including Malin's model.

Multiple Source Modeling of Low-Reynolds-Number Dissipation Rate Equation with Aids of DNS Data

  • Park, Young-Don;Shin, Jong-Keun;Chun, Kun-Go
    • Journal of Mechanical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.392-402
    • /
    • 2001
  • The paper reports a multiple source modeling of low-Reynolds-number dissipation rate equation with aids of DNS data. The key features of the model are to satisfy the wall limiting conditions of the individual source terms in the exact dissipation rate equation using the wall damping functions. The wall damping functions are formulated in term of dimensionless dissipation length scale ι(sup)+(sub)D(≡ι(sub)D($\upsilon$$\xi$)(sup)1/4/$\upsilon$) and the invariants of small and large scale turbulence anisotropy tensors. $\alpha$(sub)ij(=$\mu$(sub)i$\mu$(sub)j/$\kappa$-2$\delta$(sub)ij/3) and e(sub)ij(=$\xi$(sub)ij/$\xi$-2$\delta$(sub)ij/3). The model constants are optimized with aids of DNS data in a plane channel flow. Adopting the dissipation length scale as a parameter of damping function, the applicabilities of $\kappa$-$\xi$ model are extended to the turbulent flow calculation of complex flow passages.

  • PDF

저 레이놀즈수 $\kappa$-$\varepsilon$psilon.모형에서 DNS 자료에 의한 $\varepsilon$방정식의 다중 생성률 모형 개발 (Development of Multiple Production $\varepsilon$ Equation Model in Low Reynolds Number $\kappa$-$\varepsilon$ Model with the Aid of DNS Data)

  • 신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.304-320
    • /
    • 1996
  • A multiple production .epsilon. equation model was developed in the low Reynolds number $\kappa$-$\varepsilon$ model with the aids of DNS data. We derived the model theoretically and avoided the use of empirical correlations as much as possible in order for the model to have generality in the prediction of complex turbulent flow. Unavoidable model constants were, however, optimized with the aids of DNS data. All the production and dissipation models in the $\varepsilon$ equation were modified with damping functions to satisfy the wall limiting behavior. A new $f_{\mu}$ function, turbulent diffusion and pressure diffusion model for the k and .epsilon. equations were also proposed to satisfy the wall limiting behavior. By, computational investigation on the plane channel flows, we found that the multiple production model for .epsilon. equation could improve the near wall turbulence behavior compared with the standard production model without the complicated empirical modification. Satisfication of the wall limiting conditions for each turbulence model term was found to be most important for the accurate prediction of near wall turbulence behaviors.

약한 역압력구배의 난류유동장 해석을 위한 저레이놀즈수 k-ε 모형 개발 (Development of Low Reynolds Number k-ε Model for Prediction of a Turbulent Flow with a Weak Adverse Pressure Gradient)

  • 송경;조강래
    • 대한기계학회논문집B
    • /
    • 제23권5호
    • /
    • pp.610-620
    • /
    • 1999
  • Recently, numerous modifications of low Reynolds number $k-{\epsilon}$ model have boon carried out with the aid of DNS data. However, the previous models made in this way are too intricate to be used practically. To overcome this shortcoming, a new low Reynolds number $k-{\epsilon}$ model has boon developed by considering the distribution of turbulent properties near the wall. This study proposes the revised a turbulence model for prediction of turbulent flow with adverse pressure gradient and separation. Nondimensional distance $y^+$ in damping functions is changed to $y^*$ and some terms modeled for one dimensional flow in $\epsilon$ equations are expanded into two or three dimensional form. Predicted results by the revised model show an acceptable agreement with DNS data and experimental results. However, for a turbulent flow with severe adverse pressure gradient, an additive term reflecting an adverse pressure gradient effect will have to be considered.

Numerical investigation of turbulence models with emphasis on turbulent intensity at low Reynolds number flows

  • Musavir Bashir;Parvathy Rajendran;Ambareen Khan;Vijayanandh Raja;Sher Afghan Khan
    • Advances in aircraft and spacecraft science
    • /
    • 제10권4호
    • /
    • pp.303-315
    • /
    • 2023
  • The primary goal of this research is to investigate flow separation phenomena using various turbulence models. Also investigated are the effects of free-stream turbulence intensity on the flow over a NACA 0018 airfoil. The flow field around a NACA 0018 airfoil has been numerically simulated using RANS at Reynolds numbers ranging from 100,000 to 200,000 and angles of attack (AoA) ranging from 0° to 18° with various inflow conditions. A parametric study is conducted over a range of chord Reynolds numbers for free-stream turbulence intensities from 0.1 % to 0.5 % to understand the effects of each parameter on the suction side laminar separation bubble. The results showed that increasing the free-stream turbulence intensity reduces the length of the separation bubble formed over the suction side of the airfoil, as well as the flow prediction accuracy of each model. These models were used to compare the modeling accuracy and processing time improvements. The K- SST performs well in this simulation for estimating lift coefficients, with only small deviations at larger angles of attack. However, a stall was not predicted by the transition k-kl-omega. When predicting the location of flow reattachment over the airfoil, the transition k-kl-omega model also made some over-predictions. The Cp plots showed that the model generated results more in line with the experimental findings.

소산율 방정식의 개선을 통한 저레이놀즈수 k-.epsilon. 모형의 개발 (Developing of low Reynolds number k-.epsilon. model with improved .epsilon. equation)

  • 송경;유근종;조강래
    • 대한기계학회논문집B
    • /
    • 제22권5호
    • /
    • pp.685-697
    • /
    • 1998
  • Series of recent k-.epsilon. model modification have been carried out with the aid of DNS data to include the effect of near wall. Though these methods opened new way of turbulence modelings, newly developed turbulence models of its kind had yet shortcomings in prediction for the turbulent flows with various Reynolds numbers and various geometric conditions. As a remedy for these shortcomings, a new k-.epsilon. model proposed here by improving the dissipation rate equation and the damping function for eddy viscosity model. The new dissipation rate equation was modeled based on the energy spectrum and magnitude analysis. The damping function for eddy viscosity was also formulated on the ground of distribution of dissipation rate length scales near a wall and the DNS data. The new k-.epsilon. model was applied to the fully developed turbulent flows in a channel and a pipe with a wide range of Reynolds numbers. Prediction results showed that the present model represents properly the turbulence properties in all turbulent regions over a wide range of Reynolds numbers.

주변난류유동이 단일액적의 증발에 미치는 영향에 대한 수치적 연구 (Numerical Study for Ambient Turbulence Effects on a Single Droplet Vaporization)

  • 박정규
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2699-2709
    • /
    • 1995
  • This investigation reports on the study of the ambient turbulent effects on the droplet vaporization in the fuel spray combustion. For tractability, this discussion considers a single droplet in an infinite turbulent flow. In this numerical study, the low-Reynolds-number version of k-.epsilon. turbulence model was used to represent the turbulence effects. The set of two-dimensional conservation equations which describe the transport phenomena in turbulent flow using the mean flow quantities including the droplet internal laminar motion, are solved numerically with the finite difference procedure of Patankar(SIMPLER). The evaluation of the computational model is provided by two limiting cases: turbulent flow over the solid sphere and the laminar flow over a liquid drop. The results show that the turbulence effects are noticeable for the vaporization at high turbulence intensity (10-50%) which is encountered in a typical spray. The magnitude of turbulence effects mainly depends on the turbulent intensity. These effects are not sensitive to the Reynolds number in the range of 50 to 200, ambient temperature in the range of 700 to 1000.deg. K and the volatility.