• Title/Summary/Keyword: Low Reynolds Number Flow

Search Result 402, Processing Time 0.024 seconds

Steady and Unsteady Rotating Flows between Concentric Cylinders (동심원 환내의 정상.비정상 회전 유동)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

Microscale Heat Transfer Enhancement by Acoustic Streaming Flow (음향흐름유동 기반 마이크로 스케일 열전달 성능 향상)

  • Jeongu Ko;Jinsoo Park
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.96-103
    • /
    • 2024
  • As micro-electronic devices are getting miniaturized, technology that can manage the temperature of confined area is required. On these demands, microchannel heat exchanger is suggested as promising solution. However, due to laminar flow created inside the microchannel with high Reynolds number suppresses diffusion based natural convection, leads to low heat transfer performance of microchannel. This paper shows how acoustic streaming flow enhances the heat transfer performance inside the microchannel without using additional structure or nanoparticle inside the straight microchannel and fluid numerically. Various parameters, such as Reynolds number (Re), initial displacement (ξ) was adopted to evaluate the influence of acoustic streaming flow. The results showed that acoustic streaming flow can disturb the thermal boundary, by creating the micro-vortex inside the straight-microchannel and enhance the heat transfer performance.

NUMERICAL ANALYSIS OF ERGUN'S EQUATION FOR INTERIOR BALLISTIC ANALYSIS (강내탄도 해석에 사용되는 Ergun식에 관한 수치적 연구)

  • Bae, S.W.;Sung, H.G.;Roh, T.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.473-478
    • /
    • 2010
  • In this study, the Ergun's equation has been verified in order to calculate pressure drop of the two phase flow. The equation had been used in the high Reynolds number region for interior ballistic analysis in spite of being verified in the low Reynolds number region. Therefore additional verification seems to be inevitable. Thus, the validity of the equation has been verified using CFD in the high Reynolds number cases of the diameter-particle ratio 10, 13 and 16.

  • PDF

Characteristics of Flow over a Pair of Circular Cylinders in Side-by-Side Arrangements (나란히 배열된 한 쌍의 원형실린더를 지나는 유동의 특성)

  • Kang, Sang-Mo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1754-1759
    • /
    • 2003
  • Two-dimensional flow over a pair of circular cylinders in side-by-side arrangements at low Reynolds numbers has been numerically investigated in this study. Numerical simulations are performed, using the immersed boundary method, in the ranges of $40{\leq}Re{\leq}160$ and $g^{\ast}<5$, where Re and $g^{\ast}$ are, respectively, the Reynolds number and the spacing between the two cylinder surfaces divided by the cylinder diameter. Results show that total six kinds of wake patterns are observed over the ranges: antiphase-synchronized, inphase-synchronized, flip-flopping, single bluff-body, deflected, and steady wake patterns. It is found that the characteristics of the flow significantly depends both on the Reynolds number and gap spacing, with the latter much stronger than the former. Instantaneous flow fields, time traces, flow statistics and so on are presented to identify the wake patterns and then to understand the underlying mechanism. It is remarkable that, for the deflected wake pattern, the gap flow is deflected invariably to the cylinder of higher drag coefficient and the deflection way does not change at all. Moreover, the bifurcation phenomena where either of two wake patterns can occur are found at certain flow conditions.

  • PDF

An investigation on the effect of the wall treatments in RANS simulations of model and full-scale marine propeller flows

  • Choi, Jung-Kyu;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.967-987
    • /
    • 2020
  • A numerical analysis is carried out for the marine propellers in open water conditions to investigate the effect of the wall treatments in model and full scale. The standard wall function to apply the low of the wall and the two layer zonal model to calculate the whole boundary layer for a transition phenomenon are used with one turbulence model. To determine an appropriate distance of the first grid point from the wall when using the wall function, a formula based on Reynolds number is suggested, which can estimate the maximum y+ satisfying the logarithmic law. In the model scale, it is confirmed that a transition calculation is required for a model scale propeller with low Reynolds number that the transient region appears widely. While in the full scale, the wall function calculation is recommended for efficient calculations due to the turbulence dominant flow for large Reynolds number.

Turbulent natural convective heat transfer charateristics in a square enclosure with control plates attached at the horifontal partition (제어판이 부착된 수평격판에 의해 분리되는 밀폐공간내의 난류 자연대류 열전달 특성)

  • 김점수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.150-160
    • /
    • 2000
  • Turbulent natural convective flow and heat transfer in a square enclosure with horizontal partition are investigated numerically. The enclosure is composed of a lower hot and a upper cold horizontal walls and adiabatic vertical walls. Partitions carried with the upward, downward, and both control plates are attached perpendicularly to the one of the vertical insulated walls, respectively. The low Reynolds number $k-\varepsilon$ model is adopted to calculate the turbulent thermal convection. The governing equations are solved by using the finite element method with Galerkin method. The computations have been carried out by varying the length of partition, the position of control plates, and the Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height for water(Pr=4.95). When the control plates are attached at the edge of partition, the stability of oscillating flow grows wrose with the increase of Rayleigh number and the partition length. The heat transfer rate has been reducer than that of no control plate due to the restraint of control plates with the increase of Rayleigh number.

  • PDF

REYNOLDS NUMBER EFFECTS ON MASS TRANSFER IN TURBULENT PIPE FLOW: PART I. MEAN CONCENTRATION FIELD AND LOW-ORDER STATISTICS (난류 파이프 유동 내 물질전달에 대한 레이놀즈 수 영향: Part I. 평균 농도장 및 저차 난류통계치)

  • Kang, Chang-Woo;Yang, Kyung-Soo
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • Large Eddy Simulation(LES) of turbulent mass transfer in fully developed turbulent pipe flow has been performed to study the effect of Reynolds number on the concentration fields at $Re_{\tau}=180$, 395, 590 based on friction velocity and pipe radius. Dynamic subgrid-scale models for the turbulent subgrid-scale stresses and mass fluxes were employed to close the governing equations. Fully developed turbulent pipe flows with constant mass flux imposed at the wall are studied for Sc=0.71. The mean concentration profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. To show the effects of Reynolds number on the turbulent mass transfer, the mean concentration profile, root-mean-square of concentration fluctuations, turbulent mass fluxes, cross-correlation coefficient, turbulent diffusivity and turbulent Schmidt number are presented.

Characteristics of Flow over a Pair of Circular Cylinders in a Side-by-Side Arrangement (나란히 배열된 한 쌍의 원형실린더를 지나는 유동 특성)

  • Kang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.909-919
    • /
    • 2003
  • Two-dimensional flow over a pair of circular cylinders in a side-by-side arrangement at low Reynolds numbers has been numerically investigated in this study Numerical simulations are performed, using the immersed boundary method, for the ranges of 40$\leq$Re$\leq$160 and $g^{*}$<5, where Re and $g^{*}$ are, respectively, the Reynolds number and the spacing between the two cylinder surfaces divided by the cylinder diameter. Results show that a total of six kinds of wake patterns are observed over the ranges: antiphase-synchronized, inphase-synchronized, flip-flopping, single bluff-body, deflected, and steady wake patterns. It is found that the characteristics of the flow significantly depends both on the Reynolds number and gap spacing, with the latter much stronger than the former. Instantaneous flow fields, time traces, flow statistics and so on are presented to identify the wake patterns and then to understand the underlying mechanism. Moreover, the bifurcation phenomenon where either of two wake patterns can occur is found at certain flow conditions.ons.

Numerical Analysis on the Blade Tip Clearance Flow in the Axial Rotor (II) - Variation of Leakage Vortex with Tip Clearance and Attack Angle - (축류 회전차 익말단 틈새유동에 대한 수치해석(II) - 틈새변화 및 영각변화에 따른 누설와류의 변화 -)

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1106-1112
    • /
    • 1999
  • Substantial losses behind axial flow rotor are generated by the wake, various vortices in the hub region and the tip leakage vortex in the tip region. Particularly, the leakage vortex formed near blade tip is one of the main causes of the reduction of performance, generation of noise and aerodynamic vibration in downstream. In this study, the three-dimensional flow fields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The numerical technique was based on SIMPLE algorithm using standard $k-{\varepsilon}$ model(WFM) and Launder & Sharma's Low Reynolds Number $k-{\varepsilon}$ model(LRN). Through calculations, the effects of tip clearance and attack angle on the 3-dimensional flow fileds behind a rotor and leakage flow/vortex were investigated. The presence of tip leakage vortex, loci of vortex center and its behavior behind the rotor for various tip clearances and attack angles was described well by calculation.

Study of the Unsteady Gas Flow in a Critical Nozzle (임계노즐에서 발생하는 비정상유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF