• 제목/요약/키워드: Low Resistivity

검색결과 1,006건 처리시간 0.026초

스크린 프린팅 태양전지의 후면에 적용되기 위한 Al 특성 분석에 관한 연구

  • 이재두;김민정;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.272-272
    • /
    • 2009
  • Screen-printing metal contact is typically applied to the solar cells for mass production. And metal paste is used widely for rear contact formation of silicon solar cells. However, Screen-printing solar cell metal paste contact has low aspect ratio, low accuracy, high resistivity, hard control of unclean process. In this paper is to develop resistivity of rear contact for silicon solar cells applications. 4-point prove result, This resistivity of rear contact by Al evaporation was measured about $3.56{\times}10^6{\Omega}{\cdot}cm$ less than screen printed solar cell about $52.6{\times}10^6{\Omega}{\cdot}cm$.

  • PDF

Modified regularized Newton-Raphson algorithm for Electrical Impedance Tomography in Region Of Interest

  • Nam, Il-Hwan;Kang, Byung-Chae;Kim, Ji-Hun;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.134-137
    • /
    • 2003
  • Newton-Raphson is most used algorithm in EIT(electrical impedance tomography), cross-sectional distribution of resistivity is reconstructed by mean of both generating and sensing electrodes attached onto the surface of the object. EIT has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal resistivity values. In this paper, we propose modified cost function and weighting factor that compensate for low sensitivity between boundary measurements and internal resistivity and improve performance of Newton-Raphson for EIT in region of interest.

  • PDF

스퍼터링법에 의한 Cu막 형성 기술 (Fabrication of Copper Films by RF Magnetron Sputtering)

  • 김현식;송재성;정순종;오영우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1648-1650
    • /
    • 1996
  • In present paper, Cu films $4{\mu}m$, thick were fabricated by dual deposition methods using RF magnetron sputtering on Si wafer. The dependence of the electrical resistivity, adherence, and reflection in Cu films [$Cu_{4-x}$(low resistivity) / $Cu_x$(high adherence) / Si- wafer] on the x thickness have been investigated. Cu films of $4{\mu}m$ thickness formed with dual deposition methods had the low electrical resistivity of about $2.6{\mu}{\Omega}{\cdot}cm$ and high adherence of about 700g/cm. In conclusion, it is possible for these films to be used for micro-devices.

  • PDF

PVD법으로 증착한 W-B-C-N 박막의 질소량에 따른 구조변화 연구 (Structure Behavior of Sputtered W-B-C-N Thin Film for various nitrogen gas ratios)

  • 송문규;이창우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.109-110
    • /
    • 2005
  • We have suggested sputtered W-C-N thin film for preventing thermal budget between semiconductor and metal. These results show that the W-C-N thin film has good thermal stability and low resistivity. In this study we newly suggested sputtered W-B-C-N thin diffusion barrier. In order to improve the characteristics, we examined the impurity behaviors as a function of nitrogen gas flow ratio. This thin film is able to prevent the interdiffusion during high temperature (700 to $1000^{\circ}C$) annealing process and has low resistivity ($\sim$200$\mu{\Omega}-cm$). Through the analysis of X-Ray diffraction, resistivity and XPS, we studied structure behavior of W-B-C-N diffusion barrier.

  • PDF

선형 저밀도 폴리에틸렌과 에틸렌 비닐아세테이트의 혼합비에 따른 체적고유저항 특성 (The Volume Resistivity Properties due to Mixture ratio of Linear Low Density Polyethylene and Ethylene Vinyl Acetate)

  • 박정구;육영수;신현택;신종열;이충호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.552-555
    • /
    • 1999
  • In this paper, the volume resistivity properties due to mixture ration of linear low density polyethylene(LLDPE) and ethylene vinyl acetate(EVA) are studied. Electrodes is composed of upper electrode 37(mm $\Phi$), guardring electrode(inner 55(mm $\Phi$ ), and lower electrode 87(mm $\Phi$ In order to measure the leakage current, We used electrometer and stable oven with temperature controller. Measurement method is to measure the leakage current of next specimen after applying the voltage according to 'Step Apply Methods' for ten minutes. In order to measure the volume resistivity properties, the micro electrometer is used, the range of temperature and applying voltage are 25 to 100[$^{\circ}C$] to 100[V] respectively.

  • PDF

복잡한 지하구조 해석을 위한 물리탐사 자료 분석에 관한 연구 (Study on Analysis of Geophysical Data for Complex Geological Condition)

  • 신득현;김훈;오석훈;서백수
    • 산업기술연구
    • /
    • 제27권B호
    • /
    • pp.115-119
    • /
    • 2007
  • Currently, geophysical method is applied for understanding the subsurface geologic structure economically and systematically, but there exists some limitations on recognizing complex subsurface structures precisely by a single geophysical method. In order to understand the complex subsurface structures, we applied various geophysical methods including seismic refraction survey, two-dimensional resistivity survey, seismic tomography survey, suspension-ps log, and understood distribution of low velocity, low resistivity range of resistivity survey and correlation of an intersecting point, velocity distribution of seismic tomography survey.

  • PDF

ESAD의 기폭 파형 예측을 위한 측정기반 LEEFI 모델링 및 검증 (Measurement-based LEEFI Modeling and Experimental Verification for Predicting Firing Waveform of an ESAD)

  • 강형민;김정호;황석현;정명숙;조세영;손중탁
    • 한국군사과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.20-26
    • /
    • 2019
  • In this paper, we propose measurement based numerical resistivity model for low energy exploding foil initiator (LEEFI) of electronic safety and arming device(ESAD). A resistivity model describes a behavior of variable resistance in LEEFI by firing current. The previous resistivity model was based on high energy detonator applications as explosive bridge wire and exploding foil initiator. Therefore, to estimate the voltage, current, and burst time of LEEFI, a resistivity model suitable for LEEFI is needed. For the modeling of resistivity of LEEFI, we propose a specific action based equation which represents a behavior of LEEFI when firing current is applied. To verify the proposed model, we analyze a firing current transmission path to obtain parasitic impedance. We experimentally verify that the proposed resistivity model offers precise estimation for the behavior of variable resistance in LEEFI.

Surface and Electrical Properties of 2 wt% Cr-doped Ni Ultrathin Film Electrode for MLCCs

  • Yim, Haena;Lee, JinJu;Choi, Ji-Won
    • 센서학회지
    • /
    • 제24권4호
    • /
    • pp.224-227
    • /
    • 2015
  • In this study, 2 wt% Cr-doped Ni thin films were deposited using DC sputtering on a bare Si substrate using a 4 inch target at room temperature. In order to obtain ultrathin films from Cr-doped Ni thin films with high electrical properties and uniform surface, the micro-structure and electrical properties were investigated as a function of deposition time. For all deposition times, the Cr-doped Ni thin films had low average resistivity and small surface roughness. However, the resistivity of the Cr-doped Ni thin films at various ranges showed large differences for deposition times below 90 s. From the results, 120 s is considered as the appropriate deposition time for Cr-doped Ni thin films to obtain the lowest resistivity, a low surface roughness, and a small difference of resistivity. The Cr-doped Ni thin films are prospective materials for microdevices as ultrathin film electrodes.

실리콘 웨이퍼 비저항에 따른 Dopant-Free Silicon Heterojunction 태양전지 특성 연구 (The Influence of the Wafer Resistivity for Dopant-Free Silicon Heterojunction Solar Cell)

  • 김성해;이정호
    • 한국표면공학회지
    • /
    • 제51권3호
    • /
    • pp.185-190
    • /
    • 2018
  • Dopant-free silicon heterojunction solar cells using Transition Metal Oxide(TMO) such as Molybdenum Oxide($MoO_X$) and Vanadium Oxide($V_2O_X$) have been focused on to increase the work function of TMO in order to maximize the work function difference between TMO and n-Si for a high-efficiency solar cell. One another way to increase the work function difference is to control the silicon wafer resistivity. In this paper, dopant-free silicon heterojunction solar cells were fabricated using the wafer with the various resistivity and analyzed to understand the effect of n-Si work function. As a result, it is shown that the high passivation and junction quality when $V_2O_X$ deposited on the wafer with low work function compared to the high work function wafer, inducing the increase of higher collection probability, especially at long wavelength region. the solar cell efficiency of 15.28% was measured in low work function wafer, which is 34% higher value than the high work function solar cells.

Bias 전압에 따른 ZnO:Al 투명전도막의 전기적 특성 (Substrate Bias Voltage Dependence of Electrical Properties for ZnO:Al Film by DC Magnetron Sputtering)

  • 박강일;김병섭;임동건;이수호;곽동주
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.738-746
    • /
    • 2004
  • Recently zinc oxide(ZnO) has emerged as one of the most promising transparent conducting films with a strong demand of low cost and high performance optoelectronic devices, ZnO film has many advantages such as high chemical and mechanical stabilities, and abundance in nature. In this paper, in order to obtain the excellent transparent conducting film with low resistivity and high optical transmittance for Plasma Display Pannel(PDP), aluminium doped zinc oxide films were deposited on Corning glass substrate by dc magnetron sputtering method. The effects of the discharge power and doping amounts of $Al_2$$O_3$ on the electrical and optical properties were investigated experimentally. Particularly in order to lower the electrical resistivity, positive and negative bias voltages were applied on the substrate, and the effect of bias voltage on the electrical properties of ZnO:Al thin film were also studied and discussed. Films with lowest resistivity of $4.3 \times 10 ^{-4} \Omega-cm$ and good transmittance of 91.46 % have been achieved for the films deposited at 1 mtorr, $400^{\circ}C$, 40 W, Al content of 2 wt% with a substrate bias of +30 V for about 800 nm in film thickness.