• Title/Summary/Keyword: Low Pressure Pipe

Search Result 163, Processing Time 0.026 seconds

Numerical Study of Periodic Turbulent Flow for a Pipe with an Orifice Ring (오리피스 링이 부착된 원관내 주기적인 난류운동에 대한 수치해석)

  • 맹주성;양시영;서현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2294-2303
    • /
    • 1993
  • This paper investigated the characteristics of the turbulent incompressible flow past the orifice ring in an axi-symmetric pipe. The flow field was the turbulent pulsatile flow for Reynolds number of $2{\times}10^{5}$ which was defined based on the maximum velocity and the pipe diameter at the inlet, with oscillating frequence $(f_{os})=1/4{\pi}$ which was considered as quasi-steady state frequence. In the present investigation, finite analytic method was used to solve the governing equations in Navier Stokes and turbulent transport formulations. Particularly at high Reynolds number and low oscillation frequency, the effects of orifice ring on the flow were numerically investigated. The separation zone behind the orifice ring during the acceleration phase was found to be decreased. However, during the deceleration phase, the separation behind the orifice ring for pulsatile flow continuously grow to a size even larger than that in steady flow. The pressure drop in steady flow was found to be constant and always positive while for pulsatile flow the pressure drop change with time. And large turbulent kinetic energy, dissipation rate were found to be located in the region where the flow passes through the orifics ring. The maximum turbulent kinetic energy, generally occurs along the shear layer where the velocity gradient is large.

Flow Properties of Water Additive Corn-Cob-Mix for Handling by Pump (수분(水分)첨가된 옥수수(Corn-Cob-Mix)의 펌프 운송(運送) 시(時)의 유체성질(流體性質) 구명(究明))

  • Oh, I.H.;Heege, H.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • The flow properties of water added com-cob-mix(CCM) were studied in order to provide basic information for designing its pumping system. For the study, a model system similar to actual situation was constructed. From the experiment, it can be concluded that the flow properties of the water added CCM has close relationship with its moisture content as follows; 1. The pressure drop caused by friction was very low when the moisture content of water added CCM was more than 70%. However, when the moisture content of the material is about 60%, the pressure drop increases up to 10 kPa/m at low pumping speed, and 20 kPa/m at high pumping speed, respectively. 2. The water added CCM having about 65% moisture content showed pseudo-plastic flow characteristics. 3. As the moisture content of the material decreases, the shear stress increases more rapidly than the shear rate does. Finally, below approximately 60% moisture, the shear stress becomes a linear relationship with the shear rate. 4. It was possible to pump the material having the moisture content down to 58% through a pipe having 80 mm diameter by a pump operating at 234 rpm. However, by either increasing the diameter of the pipe or decreasing the pumping speed, it can be possible to pump the material having lower moisture content than 55%.

  • PDF

A Basic Study for the Variation of Nodal Demands According to the Low Pressure in Water Distribution Systems (배수관망내 수압부족시 절점수요량의 변화에 대한 기초적 고찰)

  • Hyun, In-Hwan;Lee, Sang-Mok;Kim, Young-Hwan;Ahn, Yong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.16 no.6
    • /
    • pp.726-732
    • /
    • 2002
  • Pressure drop could happen in the water distribution systems due to pipe breaks or maintenance. The pressure drop causes the water service shutdown and nodal water demands should be reduced in some areas. The conventional analysis method of water distribution systems can not consider the change of nodal water demands caused by these pressure drops. This study is to investigate the variation of nodal water demands according to the nodal water pressure and its effect on the analysis of water distribution systems. For these purpose, one real water service district was selected as a study area. As a result, nodal water demand patterns according to the water pressure could be suggested. Also, we could confirm that the suggested new analysis method for the water distribution systems which considering water pressure drops could be more reliable than the conventional method.

Numerical Analysis for Unsteady Thermal Stratified Turbulent Flow in a Horizontal Circular Cylinder

  • Ahn, Jang-Sun;Ko, Yong-Sang;Park, Byeong-Ho;Youm, Hag-Ki;Park, Man-Heung
    • Nuclear Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.405-414
    • /
    • 1996
  • In this paper, the unsteady 2-dimensional turbulent flow model for thermal stratification in a pressurizer surge line of PWR plant is proposed to numerically investigate the heat transfer and flow characteristics. The turbulence model is adapted to the low Reynolds number K-$\varepsilon$ model (Davidson model). The dimensionless governing equations are solved by using the SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithm. The results are compared with simulated experimental results of TEMR Test. The time-dependent temperature profiles in the fluid and pipe nil are shown with the thermal stratification occurring in the horizontal section of the pipe. The corresponding thermal stresses are also presented. The numerical result for thermal stratification by the outsurge during heatup operation of PWR shows that the maximum dimensionless temperature difference is about 0.83 between hot and cold sections of pipe well and the maximum thermal stress is calculated about 322MPa at the dimensionless time 28.5 under given conditions.

  • PDF

The Replacement Plans for Aged Public Water Supply Pipes in Apartment Buildings : Especially Apartment Buildings in Bucheon (공동주택의 노후 급수관 개선방안에 관한 연구 : 부천시 공동주택을 중심으로)

  • Lee, Yong-Hwa;Heo, Yong-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.228-232
    • /
    • 2015
  • The water supply galvanized steel pipes of apartment buildings in Bucheon city constructed with building permission before 1994 have many problems such as leaks, the water containing rust, and low water pressure due to corrosion. Therefore, this study aims to find a way to renew the water supply pipes under investigation through a survey. As a result, when replacing the galvanized steel pipe with the corrosion-resistant pipe, the water supply system should also be changed from the gravity tank system to the booster pump system and the hygienic water storage tank. It is necessary to redraft the long-term repair plan including the replacement of the water supply system. Also, it is necessary to save the allowance reserve according to the modified long-term repair plan.

PERFORMANCE ANALYSIS OF CANNED MOTOR PUMP (캔드모터펌프의 성능해석)

  • Ko, Sung-Ho;Kim, Yeon-Tae;Kwack, Young-Kyun;Kang, Min-Koo;Han, Seung-Yeul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.181-186
    • /
    • 2010
  • A numerical study was conducted to predict the performance curve of a canned motor pump for SMART(System Integrated Modular Advanced ReacTor). The study used a computational domain which included not only the pump but also a suction pipe and a volute casing with a discharging pipe in order to simulate an experimental setup. The ANSYS CFX program was utilized to obtain flow characteristics inside the pump as well as the overall pressure rise across the pump operating on- and off-design points. Computed results showed that the performance of the pump at off-design points was much lower than expected. Special attention was made to find the cause of the low performance of the pump operating at low flow rate.

  • PDF

Predictions of the Turbulent Swirling Flow using Low-Re Reynolds Stress Model (저레이놀즈수 레이놀즈응력모델을 이용한 난류선회류의 유동회석)

  • KIM J. H.;KIM K. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.135-140
    • /
    • 2000
  • Numerical calculations are carried out in order to evaluate the performance of low-Re Reynolds stress model based on SSG model for a swirling turbulent flow in a pipe. The results are compared with those of $\kappa-\epsilon$ model and GL model, and the experimental data. The finite volume method is used for the discretization, and the power-law scheme is employed as a numerical scheme. The SIMPLE algorithm is used for velocity-Pressure correction in the governing equations.

  • PDF

A Study on the Velocity Distributions and Pressure Distributions in Ejector (Ejector 내의 유동특성에 관한 연구)

  • Lee, Haeng-Nam;Park, Ji-Man;Lee, Duck-Gu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.254-259
    • /
    • 2003
  • The Ejector is used to get low pressure, and it has been applied to a lot of industry field like the heat engine, the fluid instrument power plant, the food industry, environment industry etc... because there are not any problem even it is mixed with a any kind of liquid, gas, and solid. The flow characteristics in ejector are investigated by PIV and CFD. The experiment using PIV measurement for mixing pipe’s flow characteristics acquired velocity distribution, .Condition : when mixing pipe’s diameter ratio is 1:1.9, and the flux is $Q_{1}=1.136\;l/s$, $Q_{2}=1.706\;l/s$, $Q_{3}=2.276\;l/s$. Based on the PIV and the CFD results, the flow characteristics in ejector are discussed, and it shows the validity of this study.

  • PDF

Effect of Nozzle Geometry on the Suction Flow Rate in a Ejector (이젝터의 노즐 형상이 흡입유량에 미치는 영향)

  • Kim, Yoo-Jun;Park, Joung-Woo;Seo, Lee-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.13-17
    • /
    • 2009
  • Ejector is an equipment devised for making use of the low pressure occurring from the fast fluid injection and it is a transportation equipment which can obtain vacuum using the kinetic energy of the fluid. This ejector system is, nowadays, widely used for construction machinery, heavy equipments, the cooling and ventilation of electronic devices and for the various fluid transportation and pumps. In this study, it is attempted to perform a numerical analysis and an experiment to find out the characteristics of fluid quantity, velocity and the pressure distribution of the induction pipe by changing the length and the radius ratio of the nozzle of ejector. From the results, it is investigated that the distributions of velocity and pressure of induction pipe attached are changing with the length and the radius ratio of the nozzle. In addition, it is shown that for the small and large ejector, the efficiency is the maximum when the length of the nozzle arrived to the neck of the ejector, however, if it is installed at below or above the neck the efficiency is rather decreased.

A Parametric Study for the Design of Gas-Liquid Centrifugal Separator (기체-액체 원심분리기의 설계를 위한 매개변수 연구)

  • Nagdewe, Suryakant;Lee, S.J.;Kim, H.D.;Kim, D.S.;Kwak, K.M.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.218-219
    • /
    • 2008
  • A gas-liquid centrifugal separator is widely used in industry because of its simple geometry and little maintenance. Also, these separators have considerable advantages over filters, scrubbers or precipitators in term of compact design, low pressure drop and higher capacity. A gas-liquid centrifugal separator is a device that utilizes centrifugal force and low pressure to separate liquid from gas by density difference. Design parameters such as length of separation space, swirl vane exit angle, inlet to outlet pipe diameter ratio, models for separation efficiency and low pressure drop as a function of physical dimension are not available in literature. In present study, length of separation space (from vane to gas exit opening) has been studied using CFD. The 3-D Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Based upon the obtained solutions, tangential velocities, centrifugal forces, vortices and total pressure losses are analyzed to find the best design parameters.

  • PDF