• 제목/요약/키워드: Low Pressure Combustion

검색결과 436건 처리시간 0.02초

75톤급 액체로켓엔진 연소기 저압시험을 통한 연소성능 예측 (Performance Prediction of Combustion Chamber for 75 ton LRE through Firing Tests at Low Pressure)

  • 한영민;김종규;이광진;임병직;서성현;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.66-70
    • /
    • 2010
  • 우주발사체용 75톤급 액체로켓엔진 연소기의 저압연소시험에서 얻은 데이터를 기본으로 75톤급 연소기의 연소특성속도 및 비추력을 예측하였다. 75톤급 연소기 저압연소시험에서 연소특성속도는 약 1750 m/sec, 비추력은 240 sec로 30톤급 연소기의 저압 성능보다 높은 값을 보여주었다. 30톤급 연소기의 연소시험에서 얻은 저압/고압 관계식을 통해 75톤급 연소기의 설계점에서 연소특성속도는 약 1770 m/sec, 비추력은 약 278 sec로 목표치를 상회하는 값을 예측하였다.

  • PDF

저열량 합성가스를 이용한 가압 순산소 연소 시스템의 연소 특성 분석 연구 (Investigation on Combustion Characteristics of Pressurized Oxy-fuel Combustion System using Low Calorific Value Syngas)

  • 김동희;이영재;양원
    • 한국연소학회지
    • /
    • 제21권4호
    • /
    • pp.39-47
    • /
    • 2016
  • The aims of this research were to investigate combustion characteristics of lab-scale pressurized oxy-fuel combustion(POFC) system. In this study, the reactor, 800 mm long, was equipped with co-axial burner. Low calorific value syngas that is composed of mainly CO and $H_2$ was used as fuel whereas pure oxygen was used as an oxidant. Thermal heat input to the reactor varied from 2.6 kW to 6.1 kW. The reactor pressure also increases from atmospheric up to 15 bar. The results show that as the pressure increase, the temperature of reactor decreases on the whole in all cases. A significant temperature drop was observed especially at the bottom section of the reactor that exist flame. In addition, the flame instability increases as the pressure increases. Furthermore $NO_x$ emissions increases from atmospheric up to 2 bar. However beyond 2 bar, $NO_x$ emission reduces as pressure increases. Lastly $NO_2$ ratio in $NO_x$ also increases as pressure increases.

30톤급 액체로켓엔진 재생냉각 연소기 저압 연소시험 결과 (Low Pressure Test Results of Regenerative Cooling Combustion Chamber for 30tonf-Class Liquid Rocket Engine)

  • 한영민;김종규;이광진;임병직;안규복;김문기;서성현;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.71-75
    • /
    • 2009
  • 30톤급 액체로켓엔진 재생냉각 연소기에서 넓은 영역에서의 연소기 작동성 및 연소성능 등을 확인하기 위한 저압 및 설계/탈설계점 연소시험 결과에 대해 기술하였다. 연소기의 연소압력은 60 bar, 추진제 유량은 약 89 kg/s 그리고 노즐 팽창비는 12이다. 연소특성속도에 대한 압력의 영향은 혼합비에 따라 크게 나타났다. 연소기의 비추력은 혼합비에 크게 영향을 받지 않았고 압력에 비례함을 알 수 있었다. 본 결과는 향후 대형 연소기에서 저압 연소시험의 가능성을 제시할 뿐만 아니라 대형 연소기의 고압 연소압력에서의 연소성능을 예측하는 기본 데이터로 활용될 수 있을 것이다.

  • PDF

Investigation of Self-Excited Combustion Instabilities in Two Different Combustion Systems

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1246-1257
    • /
    • 2004
  • The objective of this paper is to characterize dynamic pressure traces measured at self-excited combustion instabilities occurring in two combustion systems of different hardware. One system is a model lean premixed gas turbine combustor and the other a fullscale bipropellant liquid rocket thrust chamber. It is commonly observed in both systems that low frequency waves at around 300㎐ are first excited at the onset of combustion instabilities and after a short duration, the instability mode becomes coupled to the resonant acoustic modes of the combustion chamber, the first longitudinal mode for the lean premixed combustor and the first tangential mode for the rocket thrust chamber. Low frequency waves seem to get excited at first since flame shows the higher heat release response on the lower frequency perturbations with the smaller phase differences between heat release and pressure fluctuations. Nonlinear time series analysis of pressure traces reveals that even stable combustion might have chaotic behavior with the positive maximum Lyapunov exponent. Also, pressure fluctuations under combustion instabilities reach a limit cycle or quasi-periodic oscillations at the very similar run conditions, which manifest that a self-excited high frequency instability has strong nonlinear characteristics.

수력파동에 의한 분무변화 및 저주파 연소불안정에의 영향 예측 (The change of spray characteristics on hydraulic acoustic wave influence and prediction of low combustion instability)

  • 김태균;이상승;윤웅섭
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.152-160
    • /
    • 2004
  • Studies to investigate the influence on hydraulic acoustic wave were conducted using pressure swirl atomizer under making frequency range from 0 to 60Hz using water as a propellant. Pressure oscillation from hydraulic sources gives a strong influences on atomization and mixing processes. The ability to drive these low frequency pressure oscillations makes spray characteristics changeable. The effect of pressure perturbation and its spray characteristics showed that low injector pressure with pressure pulsation gives more significantly than high injector pressure with pressure perturbation in SMD, spray cone angle, breakup length. Moreover, this data could be used for prediction of low combustion instability getting G factor.

  • PDF

연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발 (Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion)

  • 김기현
    • 동력기계공학회지
    • /
    • 제21권3호
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

75톤급 액체로켓엔진 연소기 저압연소시험 (Low Pressure Combustion Tests for Technology Demonstration Model of 75 tonf Thrust Chamber)

  • 김종규;안규복;임병직;김문기;한영민;최환석
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.10-13
    • /
    • 2010
  • 75톤급 기술검증용 연소기 시제의 저압 연소시험을 수행하였다. 기술검증용 연소기의 설계 연소압력은 60 bar, 추진제 유량은 243.6 kg/s이다. 그러나 국내 연소시험설비의 여건상 연소압력 30 bar, 추진제 유량 121.8 kg/s의 저압 조건에서의 연소기 작동성 및 연소성능을 검증하기 위한 시험을 수행하였다. 모든 연소시험은 하드웨어의 손상 없이 성공적으로 수행되었다. 본 시험결과는 향후 75톤급 연소기의 설계점 조건에서의 연소성능을 예측하는 기본 데이터로 활용될 수 있을 것이다.

  • PDF

21AFR 희박연료모듈의 저압 및 고압 연소성능시험 (Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions)

  • 한영민;고영성;양수석;이대성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.858-863
    • /
    • 2001
  • In this paper, the test and result of flow and combustion for 21AFR lean fuel models are described. The necessity to develop the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of new designed 21AFR lean modules, the hydraulic tests in stereo lithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a results of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1. The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

  • PDF

21AFR 희박연료모듈의 저압 및 고압 연소성능시험 (Performance Test of 21AFR Lean Fuel Module at Low and High Operating Conditions)

  • 한영민;고영성;양수석;이대성
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1132-1137
    • /
    • 2002
  • In this paper, the test results of the combustion for 2 IAFR lean fuel models are described. The need for the low emission combustor has been issued from the concern on the increase of green house and the destruction of ozone layer. To evaluate the flow and combustion performance of newly designed 21AFR lean modules, the hydraulic tests in stereolithographic airflows models, the low pressure combustion tests in three injectors model for weak extinction and ignition and the high pressure combustion tests in single sector for NOx, SAE and efficiency are performed. The low pressure tests reveal that the governing parameters in weak extinction and ignition at atmospheric condition are prefilmer length, swirl flow rotation direction, secondary swirl angle and flow split. As a result of combustion test at high pressure, the efficiency and smoke level are satisfied with performance targets, but EINOx of 17.8 is higher than target value of 13.1 The high pressure tests show that the main parameters influenced on NOx are primary swirl angle, swirl flow rotation direction, heatshield exit angle and liner mixing hole location.

상용 디젤엔진의 저압 순환 EGR 추가에 대한 성능 평가 (Performance Evaluation on the Addition of Low-pressure Loop EGR in a Commercial Diesel Engine)

  • 왕태중;이종윤;심의준;김득상;이동인
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.105-110
    • /
    • 2011
  • Through this study, the performance evaluation on the addition of low-pressure loop EGR(Exhaust Gas Recirculation) in a 6.0 L commercial diesel engine was carried out using WAVE modeling and simulation. Since the key technology of advanced diesel engine combustion such as low-temperature combustion is to steadily supply high rates of EGR in a wide operating range, the current study could be effectively contribute to the design and development processes of up-to-date diesel engine systems as real-world reference data. The current simulation results show that the system in which low-pressure loop EGR is added shows almost 2.3 times increase in maximum EGR rate at 1000 rpm as well as almost 1.6 times increase at 2200 and 1600 rpm in comparison with an engine system employing high-pressure loop EGR only. Also, both turbocharger axis speed and charging pressure level did not deteriorate due to the addition of low-pressure loop EGR at 2200 and 1000 rpm, but they were fairly decreased at 1600 rpm.