• 제목/요약/키워드: Low Power and Shutdown

검색결과 49건 처리시간 0.04초

IDENTIFICATION OF HUMAN-INDUCED INITIATING EVENTS IN THE LOW POWER AND SHUTDOWN OPERATION USING THE COMMISSION ERROR SEARCH AND ASSESSMENT METHOD

  • KIM, YONGCHAN;KIM, JONGHYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.187-195
    • /
    • 2015
  • Human-induced initiating events, also called Category B actions in human reliability analysis, are operator actions that may lead directly to initiating events. Most conventional probabilistic safety analyses typically assume that the frequency of initiating events also includes the probability of human-induced initiating events. However, some regulatory documents require Category B actions to be specifically analyzed and quantified in probabilistic safety analysis. An explicit modeling of Category B actions could also potentially lead to important insights into human performance in terms of safety. However, there is no standard procedure to identify Category B actions. This paper describes a systematic procedure to identify Category B actions for low power and shutdown conditions. The procedure includes several steps to determine operator actions that may lead to initiating events in the low power and shutdown stages. These steps are the selection of initiating events, the selection of systems or components, the screening of unlikely operating actions, and the quantification of initiating events. The procedure also provides the detailed instruction for each step, such as operator's action, information required, screening rules, and the outputs. Finally, the applicability of the suggested approach is also investigated by application to a plant example.

The Effect of an Aggressive Cool-Down Following A Refueling Outage Accident in which a Pressurizer Safety valve is Stuck Open

  • Lim, Ho- Gon;Park, Jin-Hee;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.497-511
    • /
    • 2004
  • A PSV (pressurizer safety valve) popping test carried out in the early phases of a refueling outage may trigger a test-induced LOCA(loss of coolant accident) if a PSV fails to fully close and is stuck in a partially open position. According to a KSNP (Korea standard nuclear power plant) low power and shutdown PSA (probabilistic safety assessment), the failure of a high pressure safety injection (HPSI) accompanied by the failure of a PSV to fully close was identified as a dominant accident sequence with a significant impact on low power and shutdown risks (LPSR). In this study, we aim to investigate and verify a new means for mitigating this type of accident using a thermal-hydraulic analysis. In particular, we explore the applicability of an aggressive cool-down combined with operator actions. The results of the various sensitivity studies performed there will help reduce LPSR and improve Refueling outage safety.

EVALUATION OF GALVANIC CORROSION BEHAVIOR OF SA-508 LOW ALLOY STEEL AND TYPE 309L STAINLESS STEEL CLADDING OF REACTOR PRESSURE VESSEL UNDER SIMULATED PRIMARY WATER ENVIRONMENT

  • Kim, Sung-Woo;Kim, Dong-Jin;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.773-780
    • /
    • 2012
  • The article presented is concerned with an evaluation of the corrosion behavior of SA-508 low alloy steel (LAS) and Type 309L stainless steel (SS) cladding of a reactor pressure vessel under the simulated primary water chemistry of a pressurized water reactor (PWR). The uniform corrosion and galvanic corrosion rates of SA-508 LAS and Type 309L SS were measured in three different control conditions: power operation, shutdown, and power operation followed by shutdown. In all conditions, the dissimilar metal coupling of SA-508 LAS and Type 309L SS exhibited higher corrosion rates than the SA-508 base metal itself due to severe galvanic corrosion near the cladding interface, while the corrosion of Type 309L in the primary water environment was minimal. The galvanic corrosion rate of the SA-508 LAS and Type 309L SS couple measured under the simulated power operation condition was much lower than that measured in the simulated shutdown condition due to the formation of magnetite on the metal surface in a reducing environment. Based on the experimental results, the corrosion rate of SA-508 LAS clad with Type 309L SS was estimated as a function of operating cycle simulated for a typical PWR.

1,500MW대형원전 정지/저출력 안전성향상을 위한 설계개선안 및 민감도 분석 (Risk and Sensitivity Analysis during the Low Power and Shutdown Operation of the 1,500MW Advanced Power Reactor)

  • 문호림;한덕성;김재갑;이상원;임학규
    • 한국압력기기공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.33-39
    • /
    • 2019
  • An 1,500MW advanced power reactor required the standard design approval by a Korean regulatory body in 2014. The reactor has been designed to have a 4-train independent safety concept and a passive auxiliary feedwater system (PAFS). The full power risk or core damage frequency (CDF) of 1,500MW advanced power reactor has been reduced more than that of APR1400. However, the risk during the low power and shutdown (LPSD) operation should be reduced because CDF of LPSD is about 4.7 times higher than that of internal full power. The purpose of paper is to analysis design alternatives to reduce risk during the LPSD. This paper suggests design alternatives to reduce risk and presents sensitivity analysis results.

Vital area identification for the physical protection of NPPs in low-power and shutdown operations

  • Kwak, Myung Woong;Jung, Woo Sik
    • Nuclear Engineering and Technology
    • /
    • 제53권9호
    • /
    • pp.2888-2898
    • /
    • 2021
  • Vital area identification (VAI) is an essential procedure for the design of physical protection systems (PPSs) for nuclear power plants (NPPs). The purpose of PPS design is to protect vital areas. VAI has been improved continuously to overcome the shortcomings of previous VAI generations. In first-generation VAI, a sabotage fault tree was developed directly without reusing probabilistic safety assessment (PSA) results or information. In second-generation VAI, VAI model was constructed from all PSA event trees and fault trees. While in third-generation VAI, it was developed from the simplified PSA event trees and fault trees. While VAIs have been performed for NPPs in full-power operations, VAI for NPPs in low-power and shutdown (LPSD) operations has not been studied and performed, even though NPPs in LPSD operations are very vulnerable to sabotage due to the very crowded nature of NPP maintenance. This study is the first to research and apply VAI to LPSD operation of NPP. Here, the third-generation VAI method for full-power operation of NPP was adapted to the VAI of LPSD operation. In this study, LPSD VAI for a few plant operational states (POSs) was performed. Furthermore, the operation strategy of vital areas for both full-power and LPSD operations was discussed. The LPSD VAI method discussed in this paper can be easily applied to all POSs. The method and insights in this study can be important for future LPSD VAI that reflects various LPSD operational states. Regulatory bodies and electric utilities can take advantage of this LPSD VAI method.

저전력 VLSI 시스템에서 MTCMOS 블록 전원 차단 시의 전원신 잡음을 줄인 파이프라인 전원 복귀 기법 (Pipelined Wake-Up Scheme to Reduce Power-Line Noise of MTCMOS Megablock Shutdown for Low-Power VLSI Systems)

  • 이성주;연규성;전치훈;장용주;조지연;위재경
    • 대한전자공학회논문지SD
    • /
    • 제41권10호
    • /
    • pp.77-83
    • /
    • 2004
  • VLSI 시스템에서 전력 소모를 줄이기 위해서는 메가블록이 동작하지 않는 동안 전원을 차단하여 누설 전류를 억제하는 방법이 효과적이다. 최근 들어 다중 문턱 전압 CMOS를 사용하여 전원을 차단하는 방법이 널리 연구되고 있으나, 동작 주파수가 증가함에 파라 전원 복귀에 필요한 시간이 짧아지게 되고, 짧은 시간에 전원이 복귀되면서 전원선에 대량의 전류가 순간적으로 흐르게 된다. 이에 따라 매우 큰 전원 잡음이 생겨서 전원 전압이 안정적이지 못하고 흔들리게 되며 이는 많은 경우 시스템의 오동작을 초래하게 된다. 본 논문에서는 이러한 문제점을 해결하기 위하여 새로운 전원 복귀 기법을 제안한다. 제안하는 기법은 메가블록의 전원이 차단되었다가 다시 복귀할 때 한꺼번에 전원을 켜는 것이 아니라 파이프라인 방식으로 몇 단계로 나누어 전원을 켬으로서 전원선에 흐르는 최대 전류 및 이에 따른 전원 잡음을 크게 억제한다. 제안하는 파이프라인 전원 복귀 기법을 검증하기 위해서 컴팩트 플래시 메모리 제어기 칩에 본 기법을 적용하여 곱셈기 블록의 전원을 차단하고 복귀할 때의 전원 잡음을 모의실험하고 분석하였다. 모의실험 결과, 제안하는 기법은 기존의 전원 차단 기법에 비해 전원 잡음을 매우크게 줄일 수 있음을 확인하였다.

멀티프로세서상의 에너지 소모를 고려한 동적 전압 스케일링 및 전력 셧다운을 이용한 태스크 스케줄링 (Energy-Aware Task Scheduling for Multiprocessors using Dynamic Voltage Scaling and Power Shutdown)

  • 김현진;홍혜정;김홍식;강성호
    • 대한전자공학회논문지SD
    • /
    • 제46권7호
    • /
    • pp.22-28
    • /
    • 2009
  • 멀티프로세서가 임베디드 시스템에서 널리 쓰임에 따라 지원되는 전력 최소화 기법을 이용하여 태스크를 수행하기 위해 필요한 에너지의 소모량을 줄여야 할 필요성이 대두된다. 본 논문은 동적 전압 스케일링 및 전력 셧다운을 이용하여 에너지 소모를 최소화 하는 태스크 스케줄링 알고리즘을 멀티프로세서 환경을 위해 제안하였다. 제안된 알고리즘에서는 전력 셧다운시의 에너지 및 타이밍 오버헤드를 고려하여 반복적으로 태스크 할당 및 태스크 순서화를 수행한다. 제안된 반복적인 태스크 스케줄링을 통해 전체 에너지 소모를 줄이는 가장 좋은 해를 얻을 수 있었다. 전체 에너지 소모는 리니어 프로그래밍 모델 및 전력 셧다운의 임계 시간을 고려하여 계산되었다. 실제 어플리케이션으로부터 추출된 표준 태스크 그래프에 기반을 둔 실험 결과를 통해 하드웨어 자원 및 시간제한에 따른 에너지 소모 관계를 분석하였다. 실험 결과를 볼 때 제안된 알고리즘은 기존의 우선권 기반의 태스크 스케줄링에 대해서 의미 있는 성능 향상을 얻을 수 있었다.

A Loss-of-RHR Event under the Various Plant Configurations in Low Power or Shutdown Conditions

  • Seul, Kwang-Won;Bang, Young-Seok;Lee, Sukho;Kim, Hho-Jung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.551-556
    • /
    • 1997
  • A present study addresses a loss-of-RHR event as an initiating event under specific low power or shutdown conditions. Two typical plant configurations, cold leg opening case with water-filled steam generators and pressurizer opening case with emptied steam generators, were evaluated using the RELAP5/ MOD3.2 code. The calculation was compared with the experiment conducted at ROSA-IV/LSTF in Japan. As a result, the code was capable of simulating the system transient behavior following the event. Especially, thermal hydraulic transport processes including non-condensable gas behavior were reasonably predicted with an appropriate time step and CPU time. However, there were some code deficiencies such as too large system mass errors and severe flow oscillations in core region.

  • PDF