• Title/Summary/Keyword: Low Power Laser

Search Result 370, Processing Time 0.027 seconds

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process

  • Cho, Sung-Haeng;Choi, Yong-Mo;Kim, Hyung-Jun;Jeong, Yu-Gwang;Jeong, Chang-Oh;Kim, Shi-Yul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit

Real Time Pothole Detection System based on Video Data for Automatic Maintenance of Road Surface Distress (도로의 파손 상태를 자동관리하기 위한 동영상 기반 실시간 포트홀 탐지 시스템)

  • Jo, Youngtae;Ryu, Seungki
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • Potholes are caused by the presence of water in the underlying soil structure, which weakens the road pavement by expansion and contraction of water at freezing and thawing temperatures. Recently, automatic pothole detection systems have been studied, such as vibration-based methods and laser scanning methods. However, the vibration-based methods have low detection accuracy and limited detection area. Moreover, the costs for laser scanning-based methods are significantly high. Thus, in this paper, we propose a new pothole detection system using a commercial black-box camera. Normally, the computing power of a commercial black-box camera is limited. Thus, the pothole detection algorithm should be designed to work with the embedded computing environment of a black-box camera. The designed pothole detection algorithm has been tested by implementing in a black-box camera. The experimental results are analyzed with specific evaluation metrics, such as sensitivity and precision. Our studies confirm that the proposed pothole detection system can be utilized to gather pothole information in real-time.

The optimum design of MQW Buried-RWG LD (MQW Buried RWG LD 최적화 설계)

  • 황상구;오수환;김정호;김운섭;김동욱;하홍춘;홍창희
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.312-319
    • /
    • 2001
  • We proposed a B-RWG LD (Buried-ridge waveguide laser diode) having more merits than a conventional RWG-LD. It's ridge width is controlled easily, it has the advantage of being more planar than the RWG-LD and it is possible to control refractive index with growth layer thickness. Before fabricating the device, we designed the optimal device for single mode, high efficiency and high power operation. From theoretical analysis, we have to control the $d_2, d_3$ layer thicknesses for lateral effective index difference, $\Delta_{nL}$ to be higher than critical value, and simultaneously consider the ridge width for single mode and low threshold current operation. As a result, it is possible to make a single mode LD having the ridge width of $6~9{\mu}m$ if the lateral effective index difference was controlled properly. perly.

  • PDF

Surface Properties of Artificial Suedes (인조 스웨이드의 표면특성)

  • Roh, Eui Kyung;Oh, Kyung Wha
    • Fashion & Textile Research Journal
    • /
    • v.15 no.2
    • /
    • pp.309-315
    • /
    • 2013
  • This study examines the difference of surface properties according to napping characteristic of artificial suedes, measuring surface structure observation, the contact/non-contact method roughness, warm-cool feeling of touch, and subjective hand evaluation. Surface and cross-section observations showed a discernible difference in fineness, curl, length, mount of napping, and covering power of base fabric. The surface properties of artificial suede evaluated by KES-FB4 showed that the shorter napping length the more smooth surface and the roughness increased reciprocally with friction resistance and surface contour when the nap length reaches a high level. The surface roughness measuring system applied a laser displacement sensor by a non-contact method to assess napping characteristic and the base fabric and napping height. Surface roughness decreased when napping was uniformly covered with base fabric; however, the surface roughness increased specifically with the uneven covering power of the base fabric. For qmax of the suedes, those that had short and smaller amounts of napping increased; however, the napping of length and amount at some stage generated a low qmax value. The warm sensation in all suedes were strongly perceived, but the cool sensation of the perception was lower in the subjective evaluation. Smoothness and softness were perceived when the suede has a long and large amount napping; however, smoothness and hardness were perceived when the suede was short and with the uneven covering power.

Electrochemical properties of all solid state Li/LiPON/Sn-substituted LiMn2O4 thin film batteries

  • Kong, Woo-Yeon;Yim, Hae-Na;Yoon, Seok-Jin;Nahm, Sahn;Choi, Ji-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.409-409
    • /
    • 2011
  • All solid-state thin film lithium batteries have many applications in miniaturized devices because of lightweight, long-life, low self-discharge and high energy density. The research of cathode materials for thin film lithium batteries that provide high energy density at fast discharge rates is important to meet the demands for high-power applications. Among cathode materials, lithium manganese oxide materials as spinel-based compounds have been reported to possess specific advantages of high electrochemical potential, high abundant, low cost, and low toxicity. However, the lithium manganese oxide has problem of capacity fade which caused by dissolution of Mn ions during intercalation reaction and phase instability. For this problem, many studies on effect of various transition metals have been reported. In the preliminary study, the Sn-substituted LiMn2O4 thin films prepared by pulsed laser deposition have shown the improvement in discharge capacity and cycleability. In this study, the thin films of LiMn2O4 and LiSn0.0125Mn1.975O4 prepared by RF magnetron sputtering were studied with effect of deposition parameters on the phase, surface morphology and electrochemical property. And, all solid-state thin film batteries comprised of a lithium anode, lithium phosphorus oxy-nitride (LiPON) solid electrolyte and LiMn2O4-based cathode were fabricated, and the electrochemical property was investigated.

  • PDF

Selective Growth of Nanosphere Assisted Vertical Zinc Oxide Nanowires with Hydrothermal Method

  • Lee, Jin-Su;Nam, Sang-Hun;Yu, Jung-Hun;Yun, Sang-Ho;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.2-252.2
    • /
    • 2013
  • ZnO nanostructures have a lot of interest for decades due to its varied applications such as light-emitting devices, power generators, solar cells, and sensing devices etc. To get the high performance of these devices, the factors of nanostructure geometry, spacing, and alignment are important. So, Patterning of vertically- aligned ZnO nanowires are currently attractive. However, many of ZnO nanowire or nanorod fabrication methods are needs high temperature, such vapor phase transport process, metal-organic chemical vapor deposition (MOCVD), metal-organic vapor phase epitaxy, thermal evaporation, pulse laser deposition and thermal chemical vapor deposition. While hydrothermal process has great advantages-low temperature (less than $100^{\circ}C$), simple steps, short time consuming, without catalyst, and relatively ease to control than as mentioned various methods. In this work, we investigate the dependence of ZnO nanowire alignment and morphology on si substrate using of nanosphere template with various precursor concentration and components via hydrothermal process. The brief experimental scheme is as follow. First synthesized ZnO seed solution was spun coated on to cleaned Si substrate, and then annealed $350^{\circ}C$ for 1h in the furnace. Second, 200nm sized close-packed nanospheres were formed on the seed layer-coated substrate by using of gas-liquid-solid interfacial self-assembly method and drying in vaccum desicator for about a day to enhance the adhesion between seed layer and nanospheres. After that, zinc oxide nanowires were synthesized using a low temperature hydrothermal method based on alkali solution. The specimens were immersed upside down in the autoclave bath to prevent some precipitates which formed and covered on the surface. The hydrothermal conditions such as growth temperature, growth time, solution concentration, and additives are variously performed to optimize the morphologies of nanowire. To characterize the crystal structure of seed layer and nanowires, morphology, and optical properties, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and photoluminescence (PL) studies were investigated.

  • PDF

Superconducting Bandpass Fitter Using Hairpin-type Microstrip Line with Narrow Bandwidth Centered at 14 GHz (14 GHz 헤어핀형 초전도 대역통과 필터)

  • Son, Seok-Cheon;Kim, Cheol-Su;Lee, Sang-Yeol;Yoon, Hyung-Kuk;Yoon, Young-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1852-1854
    • /
    • 1999
  • In order to enhance satellite communication system performance, filters are required with the characteristics of sharp skirt, low insertion loss, and high power handling capability. But the performance of microwave passive filters is significantly declined by the conduction losses, especially in case of planar structures using film conductors. By using high temperature superconducting(HTS) film material as the conductor, higher performance could be expected. We have designed and developed narrow bandpass filters using haripin-type superconducting microstrip line for satellite communication. High quality superconducting YBCO thin films have been grown on MgO substrates by pulsed laser deposition(PLD) The deposited YBCO films were patterned by conventional wet-etching process. The transition temperatures of these films had shown 86 - 89 K. The film thicknesses were about 500 nm. Experimental results are presented for the insertion loss and return loss of the filter at 60 K.

  • PDF

Repeaterless Transmission Length on the Atmospheric Wireless Optical LOS Communication Links (대기 광 무선 LOS 통신링크에서 무중계 전송거리에 관한 연구)

  • Jung, Jin-Ho
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.194-199
    • /
    • 1998
  • In the atmospheric wireless optical communication system, the low power transmission can be accomplished by the high directivity of laser beam. But, the transmitted optical signal undergoes the serious influences by the atmospheric effects like absorption, scattering, and turbulence because the transmission channel is the atmospheric space. In this paper, therefore, we obtain the link equation for an atmospheric wireless optical LOS communication link under the atmospheric effects and find the repeaterless transmission length to estimate the system performance through the computer simulation. From the results of the computer simulation, we present the transmission length that is possible to transmit without a repeater at given data rates and know that data rate is decreased rapidly when the transmission length is increased slightly at given bit error rate.

  • PDF

Developing Sealing Material of a Dye-Sensitized Solar Cell for Outdoor Power (실외 발전을 위한 염료감응형 태양전지의 봉지재 개발)

  • Ki, Hyun-Chul;Hong, Kyung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.819-823
    • /
    • 2016
  • DSSC (dye-sensitized solar cell) is expected to be one of the next-generation photovoltaics because of its environment-friendly and low-cost properties. However, commercialization of DSSC is difficult because of the electrolyte leakage. We propose thermal curable base on silicon resin and apply a unit cell and large area ($200{\times}200mm$) dye-sensitized solar cell. The resin aimed at sealing of DSSC and gives a promising resolution for sealing of practical DSSC. In result, the photoelectric conversion efficiency of the unit cell and the module was 6.63% and 5.49%, respectively. In the durability test result, the photoelectric conversion efficiency of the module during 500, 1,000, 1,500 and 2,000 hours was 0.73%, 0.73%, 1.82% and 2.36% respectively. It was confirmed that the photoelectric conversion efficiency characteristics are constant. We have developed encapsulation material of thermal curing method excellent in chemical resistance. A sealing material was applied to the dye-sensitized solar cell and it solved the problem of durability the dye-sensitized solar cell. Sealing material may be applied to verify the possibility of practical application of the dye-sensitized solar cell.

40 Gbps All-Optical 3R Regeneration and Format Conversion with Related InP-Based Semiconductor Devices

  • Jeon, Min-Yong;Leem, Young-Ahn;Kim, Dong-Churl;Sim, Eun-Deok;Kim, Sung-Bock;Ko, Hyun-Sung;Yee, Dae-Su;Park, Kyung-Hyun
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.633-640
    • /
    • 2007
  • We report an experimental demonstration of 40 Gbps all-optical 3R regeneration with all-optical clock recovery based on InP semiconductor devices. We also obtain alloptical non-return-to-zero to return-to-zero (NRZ-to-RZ) format conversion using the recovered clock signal at 10 Gbps and 40 Gbps. It leads to a good performance using a Mach-Zehnder interferometric wavelength converter and a self-pulsating laser diode (LD). The self-pulsating LD serves a recovered clock, which has an rms timing jitter as low as sub-picosecond. In the case of 3R regeneration of RZ data, we achieve a 1.0 dB power penalty at $10^{-9}$ BER after demultiplexing 40 Gbps to 10 Gbps with an eletroabsorption modulator. The regenerated 3R data shows stable error-free operation with no BER floor for all channels. The combination of these functional devices provides all-optical 3R regeneration with NRZ-to-RZ conversion.

  • PDF