• Title/Summary/Keyword: Low Power Laser

Search Result 370, Processing Time 0.028 seconds

Effects of Low-level Light Therapy at 740 nm on Dry Eye Disease In Vivo

  • Goo, Hyeyoon;Kim, Hoon;Ahn, Jin-Chul;Cho, Kyong Jin
    • Medical Lasers
    • /
    • v.8 no.2
    • /
    • pp.50-58
    • /
    • 2019
  • Background and Objectives Low-level light therapy (LLLT) is an application of low-power light for various purposes such as promoting tissue repair, reducing inflammation, causing analgesia, etc. A previous study suggested the effect of light emitting diode (LED) light with the wavelength of 740 nm for promoting wound healing of corneal epithelial cells. This current study aimed to confirm the effect of LLLT for managing inflammation of a dry eye disease (DED) mouse model. Materials and Methods A total of 50C57BL/6 female mice were randomly grouped into 5 groups to compare the effect of LLLT:1) Control group, 2) Only LLLT group, 3) Dry eye group, 4) LLLT in dry eye group, and 5) Early treatment group. DED was induced with 4 daily injections of scopolamine hydrobromide and desiccation stress for 17 days, and LLLT at 740 nm was conducted once every 3 days. To analyze the effect of LLLT on the DED mouse model, tear volume, corneal surface irregularities, and fluorescence in stained cores were measured, and the level of inflammation was assessed with immunohistochemistry. Results The DED mouse model showed significant deterioration in the overall eye condition. After LLLT, the amount of tear volume was increased, and corneal surface irregularities were restored. Also, the number of neutrophils and the level of inflammatory cytokines significantly decreased as well. Conclusion This study showed that LLLT at 740 nm was effective in controlling the corneal conditions and the degree of inflammation in DED. Such findings may suggest therapeutic effects of LLLT at 740 nm on DED.

Light Amplification in Diode-pumped Cesium Vapor Cell (다이오드 펌프 세슘 원자 증기에서의 증폭)

  • Hwang, Jongmin;Jeong, Taek;Moon, Han Seb
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.247-252
    • /
    • 2018
  • We report amplification of a small signal in a diode-pumped Cs vapor cell with 500 torr of ethane buffer gas, in the low-pump-power regime of 200 mW or less. For efficient amplifier operation, the pump and signal beams were coupled to a single-mode optical fiber, and completely overlapped in the Cs vapor cell. We investigated the amplification of the small signal according to cell temperature, signal power, and pump power. An amplification factor of 56 was achieved under the conditions of cell temperature of $115^{\circ}C$, signal power of 0.1 mW, and pump power of 200 mW.

Effect of LEDs Light of 633 nm Wavelength in Skin of Organism (633 nm 파장의 LED 광원이 생체 피부에 미치는 영향)

  • Cheon, Min-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.760-765
    • /
    • 2008
  • Low power laser therapy is internationally certified and is known to be effective in stimulating DNA in living organisms, increasing protein synthesis and activating cell division, smoothing blood circulation, promoting cell activation, cell regeneration and function. It also has anti-inflammatory, anti-edemic, anti-fibrous dysplastic and neuralogic hyperfunctional effects. This study was intended to verify the effect of LED irradiation therapy on wound healing in cell and animal tests by applying LED irradiator using a laser and laser diode, which was independently designed and developed to emit beams of similar wavelength to that of a laser. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity and reservation. In case of cell proliferation experiment, each experiment was performed to irradiation group and non-irradiation group for tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590 nm transmittance of micro-plate reader. In the wound healing experiment, 1$cm^2$ wounds on the skin wound of SD-Rat(Sprague-Dawley Rat) were made. Light irradiation group and none light irradiation group divided, each group was irradiated one hour a day for 9 days. As a result, the cell increase of tissue cells was verified in irradiation group as compared to non-irradiation group. And, compared with none light irradiation group, the lower incidence of inflammation and faster recovery was shown in light irradiation group.

Development of $1.06/1.32{\mu}m$ Nd:YAG Laser and Dental Applications ($1.06/1.32{\mu}m$ Nd:YAG 레이저 개발 및 치과용 임상적용 연구)

  • Yoon, G.;Kim, H.S.;Hong, T.M.;Kim, J.B.;Lee, S.C.;Kim, W.K.;Zabaznov, A.;Tsvetkov, V.;Kim, J.H.;Oh, S.R.;Moon, J.W.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.192-196
    • /
    • 1996
  • [ $1.06/1.32{\mu}m$ ] dual-wavelength medical laser was developed and preliminary clinical comparisons at these two wavelengths were performed for dental application. We could develop a compact laser system 1) by lasing two wavelengths from the same Nd:YAG rod, and 2) by introducing high-voltage switching power supply modules. Experiment on gingiva of pig jaw showed higher thermal damage at $1.32{\mu}m$. Depending on particular procedures, each wavelength has its own advantages and disadvantages. For cutting, however, using conical tips rather than bare fibers provided better results with low threshold of cutting energy and less surrounding thermal damage. Appling light-absorbing dye on target area appeared to induce more damage during laser irradiation. However, histological studies showed no significant difference whether dye was applied or not.

  • PDF

Laserthermia Induced Histological Changes in Different Thermal Condition (Laser Hyperthermia에서 조건변동에 따른 병소변화)

  • Kim, Sang-Woo;Lee, Kyung-Yup;Kim, Seong-Ho;Bae, Jang-Ho;Kim, Oh-Lyong;Choi, Byung-Yearn;Cho, Soo-Ho;Shin, Hyun-Jin;Lee, Jun-Ha
    • Journal of Yeungnam Medical Science
    • /
    • v.12 no.2
    • /
    • pp.331-338
    • /
    • 1995
  • Laserthermia is a new method of local hyperthermia using fiber optic guided probe with computer controlled Nd-YAG laser system. We used a synthetic sapphire probe and allowed irradiation with contolled low power laser energy (less than 5W), in different thermal condition (temprature: 38.5~50 degrees C) for 10 minutes, in the normal brain tissue of 18 rabbits. In results, the histological changes of brain tissue was variable (myelin condensation, chromatin condensation, nuclear waving and palisading, RBC discoloration, cell necrosis) in microscopic findings after laser irradiation, but changing area was not occured proportionally in thermal condition level. Cell necrosis appears to over 44.5 degrees C and the distance was about 1.25 mm. This study, using computer controlled laserthermia system for interstitial local hyperthermia, may offer many advantages in the experimental treatment and clinical management of tumor. Minimizing normal tissue damage is now being developed.

  • PDF

Study on Optical Feedback in Optical Fiber Laser (광섬유 레이저에서의 광궤환에 대한 연구)

  • Choi, Kyoo-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.5
    • /
    • pp.985-990
    • /
    • 2007
  • The method of enhancing visibility in optical fiber sensor was investigated by improving coherence length of light source. The optical feedback technique is used to enhance coherence length in fiber laser which generates laser in near infrared wavelength region and utilizes low loss characteristics of optical communication grade fiber. In this paper, the effect to coherence length by short and long optical feedback paths are investigated by using Mach-Zehnder interferometer technique. The effect to coherence length by changing optical feedback power and optical modulation are investigated. The spectral drift was calculated by measuring the degree of phase perturbation in unbalanced Mach-Zehnder interferometer having loom path difference. The short optical feedback path was effective to reduce spectral drift to 450kHz/sec and the long optical feedback path in combination with short optical feedback path was found to further reduce spectral drift to 50kHz/sec.

Effect of Nd:YAG Laser Irradiation to Mental Region for Sensory Nerve Conduction Change (하악 이공부에 조사된 Nd:YAG 레이저가 감각신경전도변화에 미치는 영향)

  • Jeon, Jae-Woo;Kim, Kyoung-Hee;Ko, Myong-Yun;Ahn, Yong-Woo;Park, Jun-Sang
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.4
    • /
    • pp.447-455
    • /
    • 2005
  • The purpose of this study was to examine the effect of Nd:YAG laser irradiation for sensory nerve conduction change. Nd:YAG laser was irradiated to mental region for 5 minutes with the parameters that 10 Hz and 20 Hz of 100 mJ/pulse. Target size of irradiation was 30 mm diameter of circle and target-tip distance was about 10 mm. Therefore, the power density were 212 $mW/cm^2$ and 424 $mW/cm^2$. Sensory nerve conduction was evaluated with $Neurometer^{\circled}$ CPT/C before and after Nd:YAG laser irradiation. As an outcomes, the current perception threshold(CPT) and pain tolerance threshold(PTT) were obtained. We made a comparison of these two values and the results were as follows. 1. There was no significant difference in CPT at 1W, 10 Hz and 2 W, 20 Hz Nd:YAG laser irradiation. 2. There was no significant difference in PTT at 10 Hz, 20 Hz of 100 mJ/pulse Nd:YAG laser. 3. There were no significant differences in CPT and PTT between 1 W, 10 Hz group and 2 W, 20 Hz group. Therefore, We can make a conclusion that Nd:YAG laser irradiation to mental region have no effect on mental nerve conduction in our study model.

Rapid Detection of Radioactive Strontium in Water Samples Using Laser-Induced Breakdown Spectroscopy (LIBS) (Laser-Induced Breakdown Spectroscopy (LIBS)를 이용한 방사성 스트론튬 오염물질에 대한 신속한 모니터링 기술)

  • Park, Jin-young;Kim, Hyun-a;Park, Kihong;Kim, Kyoung-woong
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Along with Cs-137 (half-life: 30.17 years), Sr-90 (half-life: 28.8 years) is one of the most important environmental monitoring radioactive elements. Rapid and easy monitoring method for Sr-90 using Laser-Induced Breakdown Spectroscopy (LIBS) has been studied. Strontium belongs to a bivalent alkaline earth metal such as calcium and has similar electron arrangement and size. Due to these similar chemical properties, it can easily enter into the human body through the food chain via water, soil, and crops when leaked into the environment. In addition, it is immersed into the bone at the case of human influx and causes the toxicity for a long time (biological half-life: about 50 years). It is a very reductive and related with the specific reaction that makes wet analysis difficult. In particular, radioactive strontium should be monitored by nuclear power plants but it is very difficult to be analysed from high-cost problems as well as low accuracy of analysis due to complicated analysis procedures, expensive analysis equipment, and a pretreatment process of using massive chemicals. Therefore, we introduce the Laser-Induced Breakdown Spectroscopy (LIBS) analysis method that analyzes the elements in the sample using the inherent spectrum by generating plasma on the sample using pulse energy, and it can be analyzed in a few seconds without preprocessing. A variety of analytical plates for samples were developed to improve the analytical sensitivity by optimizing the laser, wavelength, and time resolution. This can be effectively applied to real-time monitoring of radioactive wastewater discharged from a nuclear power plant, and furthermore, it can be applied as an emergency monitoring means such as possible future accidents at a nuclear power plants.

Full Color Top Emission AMOLED Displays on Flexible Metal Foil

  • Hack, Michael;Hewitt, Richard;Urbanik, Ken;Chwang, Anna;Brown, Julie J.;Lu, Jeng Ping;Shih, Chinwen;Ho, Jackson;Street, Bob;Ramos, Teresa;Rutherford, Nicole;Tognoni, Keith;Anderson, Bob;Huffman, Dave
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.305-308
    • /
    • 2006
  • Advanced mobile communication devices require a bright, high information content display in a small, light-weight, low power consumption package. For portable applications flexible (or conformable) and rugged displays will be the future. In this paper we outline our progress towards developing such a low power consumption active-matrix flexible OLED $(FOLED^{TM})$ display. We demonstrate full color 100 ppi QVGA active matrix OLED displays on flexible stainless steel substrates. Our work in this area is focused on integrating three critical enabling technologies. The first technology component is based on UDC's high efficiency long-lived phosphorescent OLED $(PHOLED^{TM})$ device technology, which has now been commercially demonstrated as meeting the low power consumption performance requirements for mobile display applications. Secondly, is the development of flexible active-matrix backplanes, and for this our team are employing PARC's Excimer Laser Annealed (ELA) poly-Si TFTs formed on metal foil substrates as this approach represents an attractive alternative to fabricating poly-Si TFTs on plastic for the realization of first generation flexible active matrix OLED displays. Unlike most plastics, metal foil substrates can withstand a large thermal load and do not require a moisture and oxygen permeation barrier. Thirdly, the key to reliable operation is to ensure that the organic materials are fully encapsulated in a package designed for repetitive flexing, and in this device we employ a multilayer thin film Barix encapsulation technology in collaboration with Vitex systems. Drive electronics and mechanical packaging are provided by L3 Displays.

  • PDF

Cascaded Raman fiber amplifier operating at 1.3.mu.m using WDM couplers

  • Chang, Do-Il;Kong, Hong-Jin;Chernikov, S.V.;Guy, M.-J.;Taylor, J. R.
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.110-115
    • /
    • 1997
  • We report effcient cascaded Raman generation and signal amplification at 1.3.mu.m achieved in a ring resonator constructed solely from fiber components, i.e. fusion WDM couplers. Low-loss single-mode fiber with moderate $GeO_2$ content (18 mole %) is used as an active medium and pumped by a Nd:YAG laser at 1.064.mu.m. In a resonant cascaded geometry, this generates the third Stokes line at 1.24.mu.m, which acts as a pump for signal wavelength around 1.3.mu.m. A DFB laser operating at 1.315.mu.m is used to provide an input signal. An output signal powers up to 20 dBm (100 mW) with a 28 dB Raman gain are attained, where the Nd:YAG pump power is 3.4 W. It is also shown experimentally that it is important to use optical filters to suppress feedback from the resonator, permitting high Raman gain and good signal quality.