• Title/Summary/Keyword: Low Mutual Coupling

Search Result 28, Processing Time 0.02 seconds

Beam Efficiency of Wireless Power Transmission via Radio Waves from Short Range to Long Range

  • Shinohara, Naoki
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • Wireless power transmission (WPT) is useful technology in near future. There are some kinds of the WPT technologies, WPT via radio waves, resonance coupling, and inductive. Especially the WPT via radio waves is used for multi-purposes from short range to long range application. However, unfortunately it is misunderstood that it is low efficiency and low power. In this paper, I show the theory of beam efficiency between transmitting antennas and receiving antennas and also show some high efficient applications of the WPT via radio waves. Especially, I pick up a wireless power charging system of an electric vehicle and show the experimental results. I show difference between the theory of beam efficiency and the experimental results of short range WPT. I indicate that reasons of poor beam efficiency in the experiment are (1) change of impedance caused by mutual coupling between transmitting antennas and receiving antennas, (2) oblique direction of microwave power to receiving antennas caused by short distance.

The Radiation Characteristics of a Linear Phased Array Antenna using a Pin Array Patch Antenna as an Element (핀 배열 안테나를 단위 안테나로 사용한 선형 위상 배열 안테나의 방사 특성)

  • Kim, Tae-Young;Kim, Gun-Su;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.44-51
    • /
    • 2009
  • The radiation characteristics of a pin array patch antenna phased array are compared to those of a conventional patch antenna phased array. The performance of a pin array patch antenna phased array is much improved than that of a conventional patch antenna phased array because the mutual coupling between the adjacent pin array patch antennas is very small compared to that between the adjacent conventional patch antennas. The radiation characteristics of a pin array patch antenna phased array show the superior performance such as low variation of the gain of the main beam and the side lobe level for the variation of the direction of the main beam.

Design of a Tilted Beam Microstrip Patch Array Antenna using Parasitic Patch Coupling Characteristics (기생 패치의 결합 특성을 이용한 빔 틸팅 마이크로스트립 패치 배열 안테나 설계)

  • 하재권;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.202-208
    • /
    • 2003
  • In this paper, we proposed a microstrip patch array antenna for DBS reception which had high gain and high tilted angle through mutual coupling driver patch to parasitic patch in H-plane edge and broadside direction in different layers. It was designed and fabricated in 16$\times$8 array by using low cost polyester based copper-clad laminate and foam instead of high cost dielectric substrate. It had gain of 22.9 dBi, beamwidth of 4.6$^{\circ}$, and tilted angle from broadside direction of 43.9$^{\circ}$.

Site Attenuations of an Open Area Test Site (야회시험장의 시험장감쇠량)

  • 김기채;정연춘;정정환;정낙삼
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.9
    • /
    • pp.1336-1343
    • /
    • 1990
  • In this paper the theoretical analysis of the site attenuation was made on the concept of mutual impedance of antennas and the cause of characteristic hump in the site attenuation curve below 80 MHz is explained. The deviation between the FCC site attenuatios and the experimental results of an ideal open area test site at low frequencies(below 80MHz) was found to be the mutual coupling effects of the antennas under the FCC's measurement conditions. It seems desirable that the site attenuations curve of FCC document be revicused to the theoretical curves presented in this paper is long as the FCC's measurement conditions are to the applied.

  • PDF

Enhancement in Isolation among Collinearly Placed Microstrip Patch Antenna Arrays

  • Irfan Ali, Tunio;Hernan, Dellamaggiora;Umair, Saeed;Ayaz Ahmed, Hoshu;Ghulam, Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.120-124
    • /
    • 2023
  • Strong surface waves among collinearly arranged patch antenna arrays pose unwanted inter element coupling particularly when high permittivity dielectric materials are used. In order to avert those waves, a novel Defected Ground Structure (DGS) is carved out systematically between two E-plane patch antenna elements. The introduced low profile μ shaped structure consequently improves impedance bandwidth and reflection coefficient by suppressing surface waves considerably. Parametric simulation results are analyzed and discussed.

AC-DC Converter using the PFC Inductor and LLC Resonant Transformer with an Integrated Magnetic Core (하나의 코아로 집적화된 PFC 인덕터와 LLC 공진변압기 적용 AC-DC 컨버터)

  • Noh, Young-Jae;Kang, Cheol-Ha;Saran, Meas;Kim, Eun-Soo;Won, Jong-Seob;Kim, Dong-Hee;Lee, Young-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.262-272
    • /
    • 2015
  • An integrated two-in-one transformer applicable to PSUs for a 120 W LED TV is proposed. This transformer comprises a PFC inductor and an LLC transformer placed and integrated on an E-I-E type magnetic core. Performance is evaluated by observing the coupling coefficients of the proposed two-in-one transformer under various air gap topologies. Among the topologies studied, an integrated transformer with centered air gap shows stable operational characteristics with a minimized mutual coupling (interference). Furthermore, applicability of the proposed integrated transformer to PSUs for a 120 W LED TV is studied from the viewpoint of integrating different magnetic components into one core, resulting to low weight, low cost, and high power density.

A Low-Profile Broadband Array Antenna for Home Repeater Applications

  • Yoon, Sung Joon;Choi, Jaehoon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.261-266
    • /
    • 2018
  • This paper reports on the proposed design of a low profile broadband array antenna for home repeater applications. The proposed antenna consists of $1{\times}4$ patch elements and two ground planes, one of which is slitted. By using the gap feeding method, the impedance matching of the antenna is improved by a multi-resonance phenomenon. The proposed antenna provides a wide -10 dB reflection coefficient bandwidth simultaneously covering the Global System for Mobile communications (GSM-1800), Personal Communications Service (PCS), and the Universal Mobile Telecommunication System (UMTS) bands (1.67-2.32 GHz). In order to reduce the mutual coupling between adjacent patch elements, slits are embedded in the ground plane. An isolation level of -20 dB is realized over the entire operating frequency band.

Compact LTCC LPF Chip for Microwave Radar Sensor Applications

  • Lee, Young Chul
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.386-390
    • /
    • 2017
  • A $5^{th}$-order low-pass filter (LPF) chip implemented in a six-layer low-temperature co-fired ceramic (LTCC) dielectric substrate has been presented. Lumped elements constituting the LPF are designed three-dimensionally in multilayers. In order to improve the parasitic and mutual coupling effects between them, the LPF is designed by sequentially integrating the three-dimensional (3D) lumped elements, by comparing it to the results of the schematic circuit and 3D electromagnetic (EM) analysis. The designed 3D LPF chip was fabricated in a six-layer LTCC substrate as small as $4.0{\times}3.22{\times}0.68mm^3$. The measured return and insertion losses are less than -11 dB and -0.61 dB, respectively, below 1.5 GHz.

Array Calibration for CDMA Smart Antenna Systems

  • Kyeong, Mun-Geon;Park, Hyung-Geun;Oh, Hyun-Seo;Jung, Jae-Ho
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.605-614
    • /
    • 2004
  • In this paper, we investigate array calibration algorithms to derive a further improved version for correcting antenna array errors and RF transceiver errors in CDMA smart antenna systems. The structure of a multi-channel RF transceiver with a digital calibration apparatus and its calibration techniques are presented, where we propose a new RF receiver calibration scheme to minimize interference of the calibration signal on the user signals. The calibration signal is injected into a multi-channel receiver through a calibration signal injector whose array response vector is controlled in order to have a low correlation with the antenna response vector of the receive signals. We suggest a model-based antenna array calibration to remove the antenna array errors including mutual coupling errors or to predict the element patterns from the array manifold measured at a small number of angles. Computer simulations and experiment results are shown to verify the calibration algorithms.

  • PDF

Design of K-band Array Antenna for Satellite Communications (위성통신을 위한 K- 벤드용 배열 안테나 설계)

  • Lee, Hyeon-Jin;Kim, Hyun-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.167-171
    • /
    • 2011
  • In this paper, $2{\times}4$ microstrip patch antenna are proposed to implement K-band satellite communications. The microstrip feed line are inset into the radiation patch to match input impedance. Also the same current in each elements are excited by Kirchhoff's low. The elements distance of proposed array antenna are optimized $0.8{\lambda}_g$ to minimize a mutual coupling and maximize a gain. A power divider network are employed to distribute T-junction divider. As result, the proposed antenna get gain of 14[dBi] at 10.525[GHz].