• 제목/요약/키워드: Low Melting Alloys

검색결과 76건 처리시간 0.027초

Sn-CU계 다원 무연솔더의 미세구조와 납땜특성 (Microstructures and Solderability of Multi-composition Sn-Cu Lead-free Solders)

  • 김주연;배규식
    • 한국재료학회지
    • /
    • 제15권9호
    • /
    • pp.598-603
    • /
    • 2005
  • To develope new lead-free solders with the melting temperature close to that of Sn-37Pb$(183^{\circ}C)$, Sn-0.7Cu-5Pb-1Ga, Sn-0.7Cu-5Pb-1Ag, Sn-0.7Cu-5Pb-5Bi-1Ag, and Sn-0.7Cu-SBi-1Ag alloys were composed by adding low-netting elements such as Ga, Bi, Pb, and Ag to Sn-0.7Cu. Then the melting temperatures, microstructures, wettability, and adhesion properties of these alloys were evaluated. DSC analysis showed that the melting temperature of Sn-0.7Cu-SPb-1Ga was $211^{\circ}C$, and those of other alloys was in the range of $192\~200^{\circ}C$. Microstructures of these alloys after heat-treatment at $150^{\circ}C$ for 24 hrs were basically composed of coarsely- grown $\beta-Sn$ grains, and $Cu_6Sn_5$ and $Ag_3Sn$ intermetallic precipitates. Sn-0.7Cu-5Pb-1Ga and Sn-0.7Cu-5Pb-5Bi-1Ag showed excellent wettability, while Sn-0.7Cu-5Bi-1Ag and Sn-0.7Cu-5Pb-5Bi-1Ag revealed good adhesion strength with the Cu substrates. Among 4 alloys, Sn-0.7Cu-5Pb-5Bi-1Ag with the lowest melting temperature $(192^{\circ}C)$ and relatively excellent wettability and adhesion strength was suggested to be the best candidate solder to replace Sn-37Pb.

전자교반에 의한 Cu-0.5wt%Zr 합금의 반응고 조직제어에 관한 연구 (The Effect of Electromagnetic Stirring on the Semi-Solid Microstructure of Cu-0.15wt%Zr Alloy)

  • 임성철;이흥복;김경훈;권혁천;윤의박
    • 한국주조공학회지
    • /
    • 제26권1호
    • /
    • pp.40-45
    • /
    • 2006
  • Most of the work reported concerned the semi-solid processing of low melting point alloys, and in particular light alloys of aluminum and magnesium. The purpose of this paper is to develop a semi-solid microstructure of Cu alloys using electromagnetic stirring applicable for squirrel cage rotor of induction motor. The size of primary solid particle and the degree of sphericity as a function of the variation in cooling rate, stirring speed, and holding time were observed. By applying electromagnetic stirring, primary solid particles became finer and rounder relative to as-cast sample. As the input frequency increased from 30 to 40 Hz, particle size decreased. The size of primary solid particle was found to be decreased with increasing cooling rate. Also, it decreased with stirring up to 3 minutes but increased above that point. The degree of sphericity became closer to be 1 with hold time. Semi-solid microstructure of Cu alloys, one of the high melting point alloys, could be controlled by electromagnetic stirring.

Al-Cu-Li-X(In, Be) 합금의 기계적 성질에 미치는 저융점상의 영향 (The Effect of Low Melting Point Phase on Mechanical Properties of Al-Cu-Li-X(In, Be) Alloys)

  • 이종수;이승호;김석원;우기도
    • 열처리공학회지
    • /
    • 제8권4호
    • /
    • pp.245-254
    • /
    • 1995
  • The purpose of this study was to examine the effects of low melting point phase(LMPP) on mechanical properties in the Al-Cu-Li-X(In, Be) alloys. This study was performed by the differential scanning calorimetry(DSC), the transmission electron microscope(TEM), hardness test, tensile test and notch tensile test. The shape of LMPP in the specimens homogenized at $570^{\circ}C$ was film type due to remelting at grain boundary during homogenization. Low melting point phases had no effects on mechanical properties in the aging treated materials, because the density of LMPPs was low. Mechanical properties of the aging treated materials were affected by the density of matrix precipitation phases and grain sizes. For the In or In, Be added Al-Cu-Li alloys, the optimum solution treatment temperature was $550^{\circ}C$. The strength of Al-Cu-Li-In-Be $T_6$ treated alloy was higher than that of 2090-$T_8$ alloy.

  • PDF

선택적 레이저 용융 방법으로 제작한 치과용 코발트 크롬 합금에 대한 문헌고찰 (Dental Co-Cr alloys fabricated by selective laser melting: A review article)

  • 강현구
    • 대한치과보철학회지
    • /
    • 제59권2호
    • /
    • pp.248-260
    • /
    • 2021
  • 코발트-크롬 합금은 다양한 치과보철물 제작에 이용되고 있고, 다른 합금에 비해 저렴한 가격과 우수한 기계적 특성이 장점이다. 최근, 기존 제작 방식의 단점을 극복하기 위해 적층제조 방식인 선택적 레이저 용융 방법이 보철물 제작에 이용되고 있다. 선택적 레이저 용융 방법의 공정 중 급속 가열과 냉각 과정은 제작된 합금의 미세구조와 결정립을 미세화하고, 기포를 감소시켜 기존 제작 방식에 의한 합금에 비해 기계적 특성을 향상시킨다. 반면, 적층과 급속 가열 및 냉각은 다량의 잔류응력 축적을 초래하는데, 추후 기계적 특성에 악영향을 미칠 수 있다. 따라서, 잔류응력을 제거하기 위해 주로 열처리를 시행하고, 회복과 재결정화에 의한 잔류응력의 감소뿐만 아니라 상변태, 석출물 및 미세구조의 균질화가 동반되어 기계적 특성의 복잡한 변화가 나타난다. 본 문헌고찰에서 코발트-크롬 합금의 제작 방식 비교 및 선택적 레이저 용융 방법으로 제작된 합금의 특징에 대해 알아보고자 한다.

치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직 (Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings)

  • 주규지
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

용해도 낮은 금속을 이용한 전기 전도성 잉크 (Conductive Inks Manufactured with the Help of Low Melting Metals)

  • 한국남;김남수
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.126-131
    • /
    • 2008
  • In this investigation, various factors affecting manufacturing conductive inks are presented, examined and discussed. The discussion includes inherent difficulties in making conductive inks successful and at the same time offers ways in which these difficulties might be overcome. One of the solutions to overcome such difficulties is to use low melting metals and alloys. This aspect is also detailed.

카르복실산계 환원제를 통한 저융점 솔더입자가 포함된 이방성 전도성 접착제의 젖음 특성 향상 연구 (Enhancement of Wetting Characteristics for Anisotropic Conductive Adhesive with Low Melting Point Solder via Carboxylic Acid-based Novel Reductants)

  • 김효미;김주헌
    • 폴리머
    • /
    • 제34권1호
    • /
    • pp.52-57
    • /
    • 2010
  • 고 신뢰도와 높은 물성을 갖는 이방성 전도성접착제(anisotropic conductive adhesive, ACA)용 레진 개발을 위하여, 환원특성을 갖는 카르복실산을 포함한 bisphenol F계열의 에폭시 레진에 저융점 솔더입자(low melting point alloys, LMPA)를 분산시켜 제조하였다. LMPA의 융점에서의 에폭시 레진의 경화특성 및 온도에 따른 유변학 특성을 동적 시차 주사 열량계(differential scanning calorimeter, DSC)와 레오미터(rheometer)로 측정하여 최적화된 ACA 접합 공정을 설계하였다. 접합 공정시 LMPA 표면에 생성되는 산화막을 제거하여 높은 전기전도도와 안정적인 전기적 특성을 얻을 수 있도록 세가지 종류의 카르복실산을 환원제로 사용하여 각각의 젖음(wetting) 특성을 확인하였다. 부틸 카르복실산은 $28^{\circ}$의 낮은 젖음각을 나타내었으나, 경화반응 중 다량의 기포가 발생하는 문제가 있었다. 그러나, 이관능성 카르복실산(1,3-bis(2-carboxypropyl)tetramethyl disaoxane(2-CTMS)) 및 1,3-bis(3-carboxypropyl)tetramethyl disiloxane(3-CTMS))의 경우, 기포의 발생 없이 각각 $18^{\circ}$$20.3^{\circ}$의 매우 우수한 젖음 특성을 보였다.

상변화 고정방식에 의한 마이크로 박벽 구조물의 쾌속제작 (Rapid Manufacturing of Microscale Thin-walled Structures by Phase Change Workholding Method)

  • 신보성
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.188-193
    • /
    • 2005
  • To provide the various machining materials with excellent quality and dimensional accuracy, high -speed machining is very useful tool as one of the most effective rapid manufacturing processes. However, high-speed machining is not suitable for microscale thin-walled structures because of the lack of the structure stiffness to resist the cutting force. A new method which is able to make a very thin-walled structure rapidly will be proposed in this paper. This method is composed two processes, high-speed machining and filling process. Strong workholding force comes out of the solidification of filling materials. Low-melting point metal alloys are used in order to minimize the thermal effect during phase change and to hold arbitrary shape thin-walled structures quickly during high-speed machining. To verify the usefulness of this method, we will show some applications, for examples thin -wall cylinders and hemispherical shells, and compare the experimental results to analyze the dimensional accuracy of typical parts of the structures.

Rapid Manufacturing of Microscale Thin-walled Structures using a Phase Change Work-holding Method

  • Shin Bo-Sung;Yang Dong-Yol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.47-50
    • /
    • 2006
  • High-speed machining is a very useful tool and one of the most effective rapid manufacturing processes. This study sought to produce various high-speed machining materials with excellent quality and dimensional accuracy. However, high-speed machining is not suitable for microscale thin-walled structures because the structure stiffness lacks the ability to resist the cutting force. This paper proposes a new method that is able to rapidly produce very thin-walled structures. This method consists of high-speed machining followed by filling. A strong work-holding force results from the solidification of the filling materials. Low-melting point metal alloys are used to minimize the thermal effects during phase changes and to hold the arbitrarily shaped thin-walled structures quickly during the high-speed machining. We demonstrate some applications, such as thin-walled cylinders and hemispherical shells, to verify the usefulness of this method and compare the analyzed dimensional accuracy of typical parts of the structures.