• Title/Summary/Keyword: Low Frequency Vibration

Search Result 955, Processing Time 0.027 seconds

Study on Low Frequency Characteristics of Rotary Compressor (로터리 압축기 저주파 특성에 관한 연구)

  • Kwon, Byoung-Ha;Park, Sin-Kyu;Hwang, In-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.857-862
    • /
    • 2002
  • Compressor is a major noise source of air-conditioner. Especially, its low frequency band noise below 1000Hz is very important because it will not be attenuated by passing through the cover panel and heat exchanger in air-conditioner. The factors affecting the low frequency band noise are studied by geometric similarity along with several experiments, and the low frequency noise is closely related with the discharge holes of muffler as well as the cavity of lower shell. The low frequency band noise is significantly reduced by proposed designs.

  • PDF

A Study on the Performance Improvement of Medium Speed Diesel Engine Exhaust Silencer in the Low-frequency Range Using Array Resonators (공명기 배열을 이용한 중속 디젤엔진 배기 소음기의 저주파수 대역 성능 개선 연구)

  • Kim, Young-Hyun;Joo, Won-Ho;Bae, Jong-Gug
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.693-698
    • /
    • 2009
  • Various acoustic tests were carried out to investigate the acoustic performance of diesel engine exhaust silencers. In order to consider flow effects, the test facility was set up composed of fan, duct and silencer. Using the test facility, insertion loss tests were carried out to improve the acoustic performance in the low-frequency ranges. Through a series of tests, it was found out that the array resonators having multi-perforated holes inside the exhaust silencer, might be very effective in the low frequency range. Consequently, the hybrid-type silencer which is the combination of reflective silencer with array resonators and conventional absorptive silencer, was proposed and its high performance in the low-frequency range was also verified.

A Study on the Improvement of Acoustic Performance of Diesel Engine Exhaust Silencer in the Low-Frequency Range using Array Resonators (공명기 배열을 이용한 디젤엔진 소음기의 저주파수 대역 성능 개선 연구)

  • Lee, Tae-Kyung;Kim, Young-Hyun;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.30-35
    • /
    • 2007
  • Various acoustic tests were carried out to investigate the acoustic performance of diesel engine exhaust silencers. In order to consider flow effects, test equipment composed of fan, duct and silencer was set up. Using the test equipment, insertion loss tests were carried out to improve the performance in the low-frequency ranges. Through a series of tests, the fact that array resonators may be effective in the low-frequency noise has been verified. Consequently, the hybrid-type silencer which is the combination of reflective silencer with array resonators and conventional absorptive silencer were proposed and its high acoustic performance in the low-frequency range has also been verified.

  • PDF

A Helmholtz Resonator Array Panel for Low Frequency Sound Absorption (저주파수 흡음을 위한 헬름홀쯔 공명기 배열형 패널)

  • Kim, Yang-Hann;Kim, SangRyul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.924-930
    • /
    • 2005
  • Sound absorptive materials have good performance in high frequency range, not at low frequencies. Therefore it has been great challenge to develop a sound absorbing structure that is good at low frequency. We propose to use a Helmholtz resonator array panel for this purpose. A Helmholtz resonator is one of noise control elements widely used in many practical applications. The resonator is a simple structure composed of a rigid-walled cavity with a neck, but it has very high performance at resonance frequency. This paper discusses the sound absorption of Helmholtz resonator array panels at normal and random incidence. First, various experimental results are introduced and studied. Secondly, we theoretically predict the absorptive characteristics of the resonator away panel. The theoretical approach is based on the Fourier analysis for a periodic absorber. We believe that this method can be used to design a panel for low frequency noise control.

In Vivo Doppler-Based Measurement of Bending Vibration Velocity in Liver Vibrated by Lo7v Frequency Signal (초음파 Doppler법에 의한 비침투적인 생체조직의 진동속도 계측)

  • 박무훈;장윤석
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.407-412
    • /
    • 1997
  • In this paper, we present a new method to diagnose the characteristics of the soft tissue, especially a liver. In order to diagnose the characteristics of a liver, it is necessary to evaluate the propagation delay time and propagation velocity of bending vibration In a liver. For this purpose, we measure the propagation velocity of bending vibration in a liver for low frequency forced vibration using a standard ultrasonic Doppler diagnosis equipment. We have carried out preliminary experiments by using an ultrasonic probe of 3.5MHz and obtained some results. This new measurement method developed here can be applied to new research and medical fields for acoustic non-invasive diagnosis of soft tissue.

  • PDF

Power Spectrum Estimation on the Signals with Low Frequency (저주파진동 해석을 위한 데이터처리기법 연구)

  • 천영수;조남규;이리형
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.185-193
    • /
    • 1997
  • A major problem of frequency analysis in the field of low-frequencies such as building or construction vibration is the way of signal processing which is appropriate to obtain included frequency content from the finite process to be measured. Therefore, it is the aim of the investigation reported herein to develop the signal processing algorithm which is analyzed without losing the reliability of the measurements in low-frequency domain. To accomplish the research objective, it was analyzed the problems on the way of signal processing in low-frequency domain, and compared the response characteristics of FFT with those of MEM (Maximum Entropy Method) about the low-frequency of vibration. This evaluation of the response characteristics is used in determining appropriate signal processing algorithm into the low-frequency domain.

  • PDF

Vibration measures for local structures through modal tests (모달시험을 통한 국부 구조물 방진대책 수립)

  • Kwon, Jong Hyun;Kim, Mun Su;Yang, Sung Boong;Lee, Won Seok;Lee, Bong Min
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.14-18
    • /
    • 2017
  • The Lashing bridge and radar mast of ship are upright structures so they are generally exposed to excessive vibration. Recently, the use of low speed main engines for improving fuel efficiency has been increasing, and the excitation frequencies of the main engine are moving to the low frequency band. If the excitation frequencies are coincident with the natural frequencies of the local structure, excessive vibration occurs during main engine operating condition. The modal test is to experimentally determine resonance frequency, mode shape, and damping, which are vibration characteristics of a mechanical structure under dynamic external force. Through this study, the vibration characteristics of the structure are obtained by modal tests and the low vibration measure is applied to the local structures.

  • PDF

A Study on Joint Design Factors for Low Vibration Vehicle (저진동 차량을 위한 결합부 인자 연구)

  • Lee, Jae-Woo;Sung, Young-Suk;Kang, Min-Seok;Lee, Sang-Beom;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.177-184
    • /
    • 2008
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structure performance is greatly affected by crossmember and joint design. While the structural characteristic of these joint vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper present the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. The result can present design guide for high-stiffness vehicle.

  • PDF

Experimental investigation into infrasound and low-frequency noise radiation characteristics from large wind turbines (중대형 풍력터빈의 저주파 및 초저주파 소음 방사 특성에 대한 실험적 고찰)

  • Lee, Seung-Yub;Cheong, Cheol-Ung;Shin, Su-Hyun;Jung, Sung-Soo;Cheung, Wan-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1482-1489
    • /
    • 2007
  • In this paper, characteristics of infrasound and low-frequency noise emission from large modern wind turbines are experimentally investigated. The sound measurement procedures of IEC 61400-11 and ISO 7196 are utilized to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbines using the stall regulation and the pitch control for the power regulation, respectively. It was found that the G-weighted SPLs of low-frequency noise including infrasound shows positive correlation with the wind speeds, irrespective of methods of power regulation. This highlights the potential complaint of local community against the infrasound and low-frequency noise of wind turbines. The comparison of measured data with the existing hearing thresholds and criteria curves shows that it is highly probable that the low-frequency noise from the 1.5 MW and 660 kW wind turbines in the frequency range over 30 Hz leads to the psychological complaint of ordinary adults, and that the infrasound in the frequency range from 5 Hz to 8 Hz causes the complaint by rattling the house fitting such as doors and windows.

  • PDF

Improvement of Sound Transmission Loss of Ship's Bulkhead at Low Frequency Range (선박 격벽의 저주파수 대역 차음성능 향상에 관한 연구)

  • Kim, Sung-Hoon;Joo, Won-Ho;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.167-168
    • /
    • 2009
  • The noise sources in ship and offshore structure have an influence on adjacent receiving area through a partition between noise sources and receiving area. The partition in ship is usually made of stiffened plate. Sound transmission loss (STL) of the partition at high frequency could be improved by additional installation of insulation or wall panel. At low frequency, however, it is very difficult and needs an increase of plate thickness which causes a considerable weight increase of ship. In this paper, we have investigated the effect of the bulkhead boundary condition. From measurement result, we found that the bulkhead boundary condition can affect a lot in STL, especially at low frequency range. Finally, we get the 5dB increase in STL through the modification of boundary condition.

  • PDF