• Title/Summary/Keyword: Low Frequency Vibration

Search Result 955, Processing Time 0.037 seconds

The Effects of Vibration Frequency and Amplitude on Serratus Anterior Muscle Activation During Knee Push-up Plus Exercise in Individuals with Scapular Winging (어깨뼈 익상에 대한 푸쉬업플러스 시 부가적 진동의 주파수와 진폭이 어깨안정근 근활성도에 미치는 영향)

  • Park, Won-Young;Koo, Hyun-Mo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.13 no.4
    • /
    • pp.67-74
    • /
    • 2018
  • PURPOSE: This study was conducted to investigate the effects of vibration frequency and amplitude on scapular winging during the knee push-up plus exercise. METHODS: A total of 26 female subjects with scapular winging were evaluated while performing the knee push-up plus exercise with no vibration, low-frequency/low-amplitude (5 Hz/3 mm) vibration, low-frequency/high-amplitude (5 Hz/9 mm) vibration, high-frequency/low-amplitude (15 Hz/3 mm) vibration, and high-frequency/high-amplitude (15 Hz/9 mm) vibration. The surface EMG of the serratus anterior (SA) muscle was compared between the vibration frequency and amplitude. The EMG amplitude was normalized using the maximal voluntary isometric contraction (MVIC). The statistical significance of the results was evaluated using one-way ANOVA. RESULTS: The SA muscle EMG values increased at low-frequency/low-amplitude vibration and at low-frequency/high-amplitude vibration compared to no vibration. Furthermore, the same values increased at high-frequency/low-amplitude vibration and high-frequency/high-amplitude vibration compared to no vibration. In general, a higher vibration frequency and amplitude was associated with higher EMG values of the SA muscle, with particularly greater increases observed during high-frequency/high-amplitude vibration. There was also a significant difference between each condition with a high-frequency/high-amplitude vibration (p<.05). CONCLUSION: This study suggests that there were remarkable clinical effect of the knee push-up plus exercise with vibration, which enhanced the SA muscle activation in persons with scapular winging. Furthermore, applying a higher vibration frequency and amplitude more effectively increased for increasing SA muscle activation.

Characteristic analysis of low frequency vibration forming (저주파 가진 성형의 특성 분석)

  • Park, C.J.;Choi, J.P.;Park, D.Y.;Hong, N.P.;Lee, H.J.;Lee, N.K.;Kim, S.O.;Chu, Andy;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.254-258
    • /
    • 2009
  • In this paper, the low frequency vibration forming system is developed for micro-patterns formation on the metal substrate. many researchers have studied about micro-forming technologies such as micro deep drawing, press forming, forging, extrusion etc. for the formation of precise micro-patterns on the surface of metal substrates, multi-step forming process must be used to improve qualifies of the deformed patterns. Since the low frequency vibration forming system could easily deform the surface of metal substrates, several steps of multi-step forming process should be removed by using the low frequency vibration forming system. In order to find optimal process conditions, we have carried out low frequency vibration forming process with varying the vibration frequency from 110Hz to 500Hz.

  • PDF

Low Frequency Vibration of the Sprung Mass on Front Outer Wheel in Cornering (선회 시 차량의 외측전륜 스프링 상질량의 저주파 진동)

  • Lee, Byung-Rim;Lee, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1889-1893
    • /
    • 2000
  • During the test drive of developing vehicle, a low frequency vibration of sprung mass on front outer wheel has been frequently observed in cornering with some speed. The purpose of this paper is to investigate the low frequency vibration of the sprung mass. The analysis result shows that the low frequency vibration is caused by sudden migration of the center of gravity of vihicle and it is determined by geometric points of suspension.

  • PDF

Development of a Low Frequency Vibration Shaker Using Force Frequency Shifting (가진주파수 이동현상을 이용한 저주파 가진기의 개발)

  • ;L. L. Koss
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.274-280
    • /
    • 2003
  • If a sinusoidal excitation force moves back and forth along a structure with a certain frequency, the structure will be excited with the difference frequency of these two frequencies. A low frequency vibration shaker has been developed using this force frequency shifting without actually moving a shaker The shaker consists of an ordinary eccentric mass shaker, a plate, constant springs, and time varying dampers. The dampers are turned on and off in a sequential manner to simulate a traveling slide of an excitation force. The operation of the shaker is simulated by solving the equations of motion of the shaker. Characteristics of the shaker have been found and they can be utilized to design efficient low frequency shakers.

Vibration effects on remote sensing satellite images

  • Haghshenas, Javad
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.5
    • /
    • pp.543-553
    • /
    • 2017
  • Vibration is a source of performance degradation in all optical imaging systems. Performance of high resolution remote sensing payloads is often limited due to satellite platform vibrations. Effects of Linear and high frequency sinusoidal vibrations on the system MTF are known exactly in closed form but the low frequency vibration effects is a random process and must be considered statistically. Usually the vibration MTF budget is defined based on the mission requirements and the overall MTF limitations. For analyzing low frequency effects, designer must know all the systems specifications and parameters. With a good understanding of harmful vibration frequencies and amplitudes in the system preliminary design phase, their effects could be removed totally or partially. This procedure is cost effective and let the designer to eliminate just harmful vibrations and avoids over-designing. In this paper we have analyzed the effects of low-frequency platform vibrations on the payload's modulation transfer function. We have used a statistical analysis to find the probability of imaging with a MTF equal or greater than a pre-defined budget for different missions. The worst and average cases have been discussed and finally we have proposed "look-up figures". Using these look-up figures, designer can choose the electro-optical parameters in such a way that vibration effects be less than its pre-defined budget. Furthermore, using the results, we can propose a damping profile based on which vibration frequencies and amplitudes must be eliminated to stabilize the payload system.

The Effect of Sling Exercise Therapy with Vibration Balls on Upper Limb Muscle Activity for Paraplegia-Spinal Cord Injury

  • Oh, Ju Hwan;Kwon, Tae Kyu
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.187-191
    • /
    • 2018
  • Objective: The purpose of the present study is to investigate the effect of a muscle activity by applying the complex exercise method of sling in accordance with the provision of various vibration intensities for paraplegia-spinal cord injury. Method: The subjects of the study were 15 men in their 40s and 50s with lower limb disabilities and low potential risk, who were randomly divided into a sling exercise group (SG n=4), a sling with low frequency vibration group (SLVG n=4), a sling with mid-frequency vibration group (SMVG n=4), and a sling with high frequency group (SHVG n=4) in accordance with the provision of slings and vibration stimuli. The vibratory intensity provided was divided into low frequency (30 Hz), mid-frequency (50 Hz), and high frequency (70 Hz). The anterior deltoid (AD), the posterior deltoid (PD), the pectoralis major (PM), the upper trapezius (UT), the latissimus dorsi (LD), and the multifidus (MF) were measured to compare and analyze muscle activity. Results: The closed kinetic chain (CKC) exercise to the shoulder joint showed higher muscle activity in most muscles for the SMVG, and statistically significant differences in the anterior deltoid (AD), the pectoralis major (PM), and the multifidus (MF) in particular. Conclusion: The intermediate frequency (50 Hz) string vibration was the effective vibration stimuli for Closed kinetic chain (CKC) exercises.

Effect of low frequency oscillations during milking on udder temperature and welfare of dairy cows

  • Antanas Sederevicius;Vaidas Oberauskas;Rasa Zelvyte;Judita Zymantiene;Kristina Musayeva;Juozas Zemaitis;Vytautas Jurenas;Algimantas Bubulis;Joris Vezys
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.244-257
    • /
    • 2023
  • The study aimed to investigate the effect of low-frequency oscillations on the cow udder, milk parameters, and animal welfare during the automated milking process. The study's objective was to investigate the impact of low-frequency oscillations on the udder and teats' blood circulation by creating a mathematical model of mammary glands, using milkers and vibrators to analyze the theoretical dynamics of oscillations. The mechanical vibration device developed and tested in the study was mounted on a DeLaval automatic milking machine, which excited the udder with low-frequency oscillations, allowing the analysis of input parameters (temperature, oscillation amplitude) and using feedback data, changing the device parameters such as vibration frequency and duration. The experimental study was performed using an artificial cow's udder model with and without milk and a DeLaval milking machine, exciting the model with low-frequency harmonic oscillations (frequency range 15-60 Hz, vibration amplitude 2-5 mm). The investigation in vitro applying low-frequency of the vibration system's first-order frequencies in lateral (X) direction showed the low-frequency values of 23.5-26.5 Hz (effective frequency of the simulation analysis was 25.0 Hz). The tested values of the first-order frequency of the vibration system in the vertical (Y) direction were 37.5-41.5 Hz (effective frequency of the simulation analysis was 41.0 Hz), with higher amplitude and lower vibration damping. During in vivo experiments, while milking, the vibrator was inducing mechanical milking-similar vibrations in the udder. The vibrations were spreading to the entire udder and caused physiotherapeutic effects such as activated physiological processes and increased udder base temperature by 0.57℃ (p < 0.001), thus increasing blood flow in the udder. Used low-frequency vibrations did not significantly affect milk yield, milk composition, milk quality indicators, and animal welfare. The investigation results showed that applying low-frequency vibration on a cow udder during automatic milking is a non-invasive, efficient method to stimulate blood circulation in the udder and improve teat and udder health without changing milk quality and production. Further studies will be carried out in the following research phase on clinical and subclinical mastitis cows.

Development of a Low Frequency Vibration Shaker Using Force Frequency Shifting (가진주파수 이동현상을 이용한 저주파 가진기의 개발)

  • Lee, Gun-Myung;Koss, L.L.;Lee, Jung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.182-186
    • /
    • 2002
  • If a sinusoidal excitation force moves back and forth along a structure with a certain frequency, the structure will be excited with the difference frequency of these two frequencies. A low frequency vibration shaker has been developed using this force frequency shifting without actually moving a shaker. The shaker consists of an ordinary eccentric mass shaker, a plate, constant springs, and time varying dampers. The dampers are turned on and off in a sequential manner to simulate a traveling slide of an excitation force. The operation of the shaker is simulated by solving the equations of motion of the shaker. Characteristics of the shaker have been found and they will be utilized to design efficient low frequency shakers.

  • PDF

Evaluation on Vibration Characteristics of an Apartment Building Structure (아파트 구조물의 진동특성 평가에 관한 연구)

  • Choi, Chang-Sik;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • A problem of frequency in the field of low-frequencies such as high-rise apartment building or construction vibration are often found. In this study, damage reason of a 25 stories apartment building was searched on the basis of actual damage. To find the damage reason, structural design procedure were reviewed and low-frequency vibration test was conducted. The results indicate that the main damage reason is not by the low-frequency vibration but the asymmetrical plan of that building.

  • PDF

Low frequency noise reduction by coupling with membrane (박막과의 연성에 의한 저주파 소음 저감)

  • 박수경;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.148-152
    • /
    • 1996
  • A method of deminishing low frequency noise by acoustic acoupling with compliant wall is described. The coupled governing equations and boundary conditions are derived and solved. The coupled system shows very interesting behavior in the low frequency region; in the low frequency, acoustic wave doesn't propagate, but decay to satisfy the boundary condition with the compliant wall. Henceforth using this mechanism, we propose a method of reducing low frequency noise, which is infact related with the physical properties of compliant wall. The method has been experimentally verified.

  • PDF