• Title/Summary/Keyword: Low Energy X-rays

Search Result 44, Processing Time 0.029 seconds

The Study on Interpretation of the Scatter Degradation Factor using an additional Filter in a Medical Imaging System (의료 영상 시스템에서 부가 필터를 이용한 산란 열화 인자의 해석에 관한 연구)

  • Kang, Sang Sik;Kim, Kyo Tae;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.589-596
    • /
    • 2019
  • X-rays used for diagnosis have a continuous energy distribution. However, photons with low energy not only reduce image contrast, but also contribute to the patient's radiation exposure. Therefore, clinics currently use filters made of aluminum. Such filters are advantageous because they can reduce the exposure of the patient to radiation. However, they may have negative effects on imaging quality, as they lead to increases in the scattered dose. In this study, we investigated the effects of the scattered dose generated by an aluminum filter on medical image quality. We used the relative standard deviation and the scatter degradation factor as evaluation indices, as they can be used to quantitatively express the decrease in the degree of contrast in imaging. We verified that the scattered dose generated by the increase in the thickness of the aluminum filter causes degradation of the quality of medical images.

The Change of Collected Light According to Changing of Reflectance and Thickness of CdWO4 Scintillator for High Energy X-ray Imaging Detection (고에너지 X-선 영상검출을 위한 CdWO4 섬광체 두께와 반사체의 반사율 변화에 따른 광 수집량의 변화)

  • Lim, Chang Hwy;Park, Jong-Won;Lee, Junghee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1704-1710
    • /
    • 2020
  • The high-energy X-ray imaging detector used for container inspection uses a thick scintillator to effectively acquire X-rays. X-ray incident on the scintillator is generally up to 9MeV. Therefore, to effectively collect X-ray, it is necessary to use a thick scintillator. To collect the light generated by the reaction between X-ray and scintillator, an optical-sensor must be combined with the scintillator. In this study, a study on the design conditions of the detector using a CdWO4 and a small sensor is described. To calculate the collected light according to the change of the scintillator thickness and the reflectance of surface, MCNP6 and DETECT2000 were used. As a result of calculating, it was confirmed that when the reflectance of the surface was low, it was appropriate to select a scintillator with a thickness of 15 to 20-mm, but as the reflectance increased, it was confirmed that it was appropriate to select a CdWO4 with a thickness of 25 to 30-mm.

Development of $^{169}Yb$ Low-Energy Sealed Source for Nondestructive Testing Applications Utilizing HANARO (하나로를 이용한 비파괴검사용 $^{169}Yb$ 저에너지 밀봉선원 개발)

  • Son, K.J.;Hong, S.B.;Jang, K.D.;Han, H.S.;Park, U.J.;Lee, J.S.;Seo, K.S.;Han, I.S.;Cho, W.K.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • [ $^{169}Yb$ ] industrial NDT sealed sources were developed by using $Yb_2O_3$ pellets as the target and demonstrated for their performance. To produce the pellets, optimal compacting and sintering conditions were determined experimentally. Source holders for $^{169}Yb$ were designed and fabricated. After assembling an active source produced from HANARO with the developed source holder, a demonstration experiment was performed to compare the quality of the radiographs from $^{192}Ir$ and soft X-rays. This demonstration study showed that the developed $^{169}Yb$ produced better radiographs than $^{192}Ir$ for a carbon steel with less than a 4 mm thickness.

The Enhancement of Skin Sparing by Tray Materials for High Energy Photon Beam (고에너지 광자선치료에서 고정판 흡수물질을 이용한 피부보호효과의 향상)

  • Chu, Sung-Sil;Lee, Chang-Geol;Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.449-454
    • /
    • 1993
  • The skin sparing effect associated with high energy x-ray or gamma ray beams may be reduce or lost under certain conditions of treatment. Current trends in using large fields. Shield carrying trays, compensating filters, and isocentric methods of treatment have posed problems of increased skin dose which sometimes become a limiting factor in giving adquate tumor doses. We used the shallow ion chamber to measure the phantom surface dose and the physical treatment variables for Co-60 gamma ray, 4MV and 10 MV x-ray beam. The dependence of percent surface dose on field sizes, atomic number of the shielding tray materials and its distance from the surface for 4, 10MV x-rays and Co-60 gamma ray is qualitatively similar. The use of 2 mm thick tin filter is recommended for situations where a low atomic number tray is introduced into the beam at distances less than 15 cm from the surface and with the large field sized for 4 MV x-ray beam. In case of Co-60 gamma ray, the lead glass tray is suitable for enhancement of skin sparing. Also, the filter distance should be as large as possible to achieve substantial skin sparing.

  • PDF

Image reconstruction algorithm for momentum dependent muon scattering tomography

  • JungHyun Bae;Rose Montgomery;Stylianos Chatzidakis
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1553-1561
    • /
    • 2024
  • Nondestructive radiography using cosmic ray muons has been used for decades to monitor nuclear reactor and spent nuclear fuel storage. Because nuclear fuel assemblies are highly dense and large, typical radiation probes such as x-rays cannot penetrate these target imaging objects. Although cosmic ray muons are highly penetrative for nuclear fuels as a result of their relatively high energy, the wide application of muon tomography is limited because of naturally low cosmic ray muon flux. This work presents a new image reconstruction algorithm to maximize the utility of cosmic ray muon in tomography applications. Muon momentum information is used to improve imaging resolution, as well as muon scattering angle. In this work, a new convolution was introduced known as M-value, which is a mathematical integration of two measured quantities: scattering angle and momentum. It captures the objects' quantity and density in a way that is easy to use with image reconstruction algorithms. The results demonstrate how to reconstruct images when muon momentum measurements are included in a typical muon scattering tomography algorithm. Using M-value improves muon tomography image resolution by replacing the scattering angle value without increasing computation costs. This new algorithm is projected to be a standard nondestructive radiography technique for spent nuclear fuel and nuclear material management.

Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites

  • Mengge Dong;Suying Zhou ;He Yang ;Xiangxin Xue
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2613-2620
    • /
    • 2023
  • Excellent thermal neutron absorption performance of boron expands the potential use of boron rich slag to prepare epoxy resin matrix nuclear shielding composites. However, shielding attenuation behaviors and mechanism of the composites against gamma rays are unclear. Based on the radiation protection theory, Phy-X/PSD, XCOM, and 60Co gamma ray source were integrated to obtain the shielding parameters of boron rich slag/epoxy resin composites at 0.015-15 MeV, which include mass attenuation coefficient (µt), linear attenuation coefficient (µ), half value thickness layer (HVL), electron density (Neff), effective atomic number (Zeff), exposure buildup factor (EBF) and exposure absorption buildup factor (EABF).µt, µ, HVL, Neff, Zeff, EBF and EABF are 0.02-7 cm2/g, 0.04-17 cm-1, 0.045-20 cm, 5-14, 3 × 1023-8 × 1023 electron/g, 0-2000, and 0-3500. Shielding performance is BS4, BS3, BS3, BS1 in descending order, but worse than ordinary concrete. µ and HVL of BS1-BS4 for 60Co gamma ray is 0.095-0.110 cm-1 and 6.3-7.2 cm. Shielding mechanism is main interactions for attenuation gamma ray by BS1-BS4 are elements with higher content or higher atomic number via Photoelectric Absorption at low energy range, and elements with higher content via Compton Scattering and Pair Production in Nuclear Field at middle and higher energy range.

Breeding of four-leaf white clover (Trifolium repens L.) through 60Co gamma-ray irradiation

  • Song, In-Ja;Kang, Hong-Gyu;Kang, Ji-Yeon;Kim, Hae-Deun;Bae, Tae-Woong;Kang, Si-Young;Lim, Pyung-Ok;Adachi, Taiji;Lee, Hyo-Yeon
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.191-197
    • /
    • 2009
  • Four-leaf white clover is not found easily in nature due to its low appearance rate (1 in 10,000). Because people believe that it brings good luck and like to either keep it or present it to a loved one, it has commercial and ornamental value. To breed four-leaf clover, we exposed its flowers to ${\gamma}-rays$ at the pollination stage. The $M_1$ seeds produced following doses at 25-100 Gy showed an approximately 74% germination rate, with seedling survival at 46%. In the $M_1$ generation of plants irradiated within that dose range, we found an increased frequency of four leaflets. One of them, Jeju Lucky-1 (JL-1), had a frequency of about 60%. To see whether that mutation was somaclonal or genetic, we observed its $M_2$ generation and found that such a phenotype reappeared. Although our results demonstrated that the irradiation of fully mature flowers led to a higher frequency of 4-leaflets, we could not clearly explain the genetic mechanism involved. We suggest that JL-1 is valuable as a new variety, without further genetic fixation, because white clover can be propagated vegetatively by stolons.

IR Absorption Property in NaNo-thick Nickel Cobalt Composite Silicides (나노급 두께의 Ni50Co50 복합 실리사이드의 적외선 흡수 특성 연구)

  • Song, Oh Sung;Kim, Jong Ryul;Choi, Young Youn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.88-96
    • /
    • 2008
  • Thermal evaporated 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films were deposited to examine the energy saving properties of silicides formed by rapid thermal annealing at temperature ranging from 500 to $1,100^{\circ}C$ for 40 seconds. Thermal evaporated 10 nm-Ni/(70 nm-poly)Si films were also deposited as a reference using the same method for depositing the 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films. A four-point probe was used to examine the sheet resistance. Transmission electron microscopy (TEM) and X-ray diffraction XRD were used to determine cross sectional microstructure and phase changes, respectively. UV-VIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were used to examine the near-infrared (NIR) and middle-infrared (MIR) absorbance. TEM analysis confirmed that the uniform nickel-cobalt composite silicide layers approximately 21 to 55 nm in thickness had formed on the single and polycrystalline silicon substrates as well as on the 25 to 100 nm thick nickel silicide layers. In particular, nickel-cobalt composite silicides showed a low sheet resistance, even after rapid annealing at $1,100^{\circ}C$. Nickel-cobalt composite silicide and nickel silicide films on the single silicon substrates showed similar absorbance in the near-IR region, while those on the polycrystalline silicon substrates showed excellent absorbance until the 1,750 nm region. Silicides on polycrystalline substrates showed high absorbance in the middle IR region. Nickel-cobalt composite silicides on the poly-Si substrates annealed at $1,000^{\circ}C$ superior IR absorption on both NIR and MIR region. These results suggest that the newly proposed $Ni_{50}Co_{50}$ composite silicides may be suitable for applications of IR absorption coatings.

A Comparison of Density and Patient Doses According to kVp and mAs Changes in General Radiography (일반촬영에서 kVp와 mAs의 변화에 따른 농도와 환자 선량 비교)

  • Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.987-994
    • /
    • 2019
  • Low energy x-rays that occur in the low tube voltage radiography of general radiography are absorbed strongly in the body and do not aid image quality enhancement. This study maintains titer in general radiography while using tube current that are proportional to density and the tube voltage 15% principle according to density to reduce patient exposure doses, and area doses and entrance surface doses were measured to compare patient exposure doses. In hand, knee, abdomen, and skull radiography, kVp was increased to 115% and mAs was decreased to 50% and kVp was decreased to 85% while mAs was increased to 200% and area doses and entrance surface doses were measured to compare relative doses. Also, 5 places in each image were set, density was measured, and Kruskal wallis H test was conducted to observe significance probabilities between groups. To fix density, kVp was increased to 115% and mAs was decreased to 50% and after measurements of mean area doses and entrance surface doses were made by each part, each decreased to 58.68% and 59.85% when standard doses were set to 100%, and each increased to 147.28% and 159.9% when kVp was decreased to 85% and mAs was increased to 200%. Comparisons of density changes showed that hand, knee, abdomen, and skull radiography all displayed significance probabilities>0.05, showing no changes in concentration. Radiography that increases kVp and lowers mAs through reasonable calculations within ranges that don't affect resolution and contrast seems to be a simple way to decrease patient exposure doses.

A Study on Dimethacryloyloxy Alkane Derivatives Having an Anti-wear Performance as Lubricating Oil Additives (윤활유첨가제로써 마모억제 성능을 갖는 Dimethacryloyloxy Alkane 유도체에 관한 연구)

  • Han, Hye-Rim;Cho, Jung-Eun;Sim, Dae-Seon;Kang, Chung-Ho;Kim, Young-Wun;Jeong, Noh-Hee;Kang, Ho-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.583-589
    • /
    • 2016
  • Lubricant additives including zinc dialkyldithiophosphate (ZDDP) containing metal have been widely used due to the advantage of very low cost, but they can generate impurities such as ash. In this work, ZDDP containing metals was partially replaced with bis[3-(dialkyloxyphosphorothionyl) thio-2-methylpropanyloxy] butane (BAP4s) which was synthesized conveniently and effectively from alkanediol without any metal components. Also, the wear resistance property of synthesized BAP4s were studied. Wear scar diameter (WSD) values of BAP4s with butyl, octyl, decyl, dodecyl or tetradecyl groups were also measured by four-ball test. As the length of the alkyl group increased from 4 to 8, the WSD value of BAP4s decreased rapidly from 0.59 to 0.45 mm, but from 8 to 14, the value increased very slowly from 0.45 to 0.50 mm. Thus, among all BAP4s, B8P4 having BAP4 with the octyl group, showed the lowest WSD value. Furthermore, the WSD values were measured in a lubricant base oil mixed with a 0.50 percent concentration (w/w) of either BAP4 or ZDDP. The former was 0.55 mm, and the latter was 0.45 mm. The thermal stability and tribofilm formation peroperty were also measured by thermogravimetric analyzer (TGA) and energy-dispersive X-rays spectroscopy (EDS), respectively.