• Title/Summary/Keyword: Low Energy Electron-Beam

Search Result 141, Processing Time 0.027 seconds

High Energy Electron Dosimetry by Alanine/ESR Spectroscopy (Alanine/ESR Spectroscopy에 의한 고에너지 전자선의 선량측정)

  • Chu, Sung-Sil
    • Radiation Oncology Journal
    • /
    • v.7 no.1
    • /
    • pp.85-92
    • /
    • 1989
  • Dosimerty based on electron spin resonance (ESR) analysis of radiation induced free radicals in amino acids is relevant to biological dosimetry applications. Alanine detectors are without walls and are tissue equivalent. Therefore, alanine ESR dosimetry looks promising for use in the therapy level. The dose range of the alanine/ESR dosimetry system can be extended down to 1 Gy. In water phantom the absorbed dose of electrons generated by a medical linear accelerator of different initial energies $(6\~21MeV)$ and therapeutic dose levels (1~60 Gy) was measured. Furthermore, depth dose measurements carried out with alanine dosimeters were compared with ionization chamber measurements. As the results, the measured absorbed doses for shallow depth of initial electron energies above 15 MeV were higher by$2\~5\%$ than those calculated by nominal energy $C_E$ factors. This seems to be caused by low energy scattered beams generated from the scattering foil and electron cones of beam projecting device in medical linear accelerator.

  • PDF

SIMS glancing anlge을 적용한 tunnel oxide 내 Nitorgen 깊이 분해능 향상 연구

  • Lee, Jong-Pil;Choe, Geun-Yeong;Kim, Gyeong-Won;Kim, Ho-Jeong;Han, O-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.41-41
    • /
    • 2011
  • Flash memory에서 tunnel oxide film은 electron tunnelling 현상을 이용하여 gate에 전하를 전달하는 통로로 사용되고 있다. 특히, tunnel oxide film 내부의 charge trap 현상과 불순물이 소자 특성에 직접적인 영향을 주고 있어, 후속 N2O/NO 열처리 공정에서 SiO2/Si 계면에 nitrogen을 주입하여 tunnel oxide film 특성을 개선하고 있다. 따라서 N2O/NO 열처리 공정 최적화를 위해서는 tunnel oxide film 내 N 농도와 분포에 대한 정확한 평가가 필수적이다[1]. 본 실험에서는 low energy magnetic SIMS를 이용하여 N2O로 열처리된 tunnel oxide film 내의 N농도를 보다 정확하게 평가하고자 하였다. 사용된 시료는 Si substrate에 oxidation 이후 N2O 열처리를 진행하여 tunnel oxide를 형성시켰으며, 분석 impact energy는 surface effect최소화와 최상의 depth resolution 확보를 위해 250eV를 사용하였으며, matrix effect와 mass interference를 방지하기 위해 MCs+ cluster mode[2]로 CsN signal를 검출하였다. 실험 결과, 특정 primary beam 입사각도에서 nitrogen depth resolution 저하 현상이 발생하였고, SIMS crater 표면이 매우 거칠게 나타났다. 이에, Depth resolution 저하 현상을 개선하기 위해 극한의 glancing 입사각 조건으로 secondary extraction voltage 변화를 통해 depth resolution이 개선되는 최적의 impact energy와 primary beam 입사각 조건을 확보하였다. 그 결과 nitrogen의 depth resolution은 1.6nm의 depth resolution을 확보하였으며, 보다 정확한 N 농도와 분포를 평가할 수 있게 되었다.

  • PDF

Measurement of Electron Beam Output for the Prototype Compact Linac (콤팩트 전자 선형가속기 시작품의 출력측정에 관한 연구)

  • Kim, Sung-Woo;Kang, Sang Koo;Rhee, Dong Joo;Lim, Heuijin;Lee, Manwoo;Yi, Jungyu;Lee, Mujin;Yang, Kwangmo;Ro, Tae Ik;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • The C-band compact linear accelerator (linac) is being developed at Dongnam Institute of radiological & Medical Sciences (DIRAMS) for medical and industrial applications. This paper was focused on the output measurement of the electron beam generated from the prototype electron linac. The dose rate was measured in unit of cGy/min per unit pulse frequency according to the IAEA TRS-398 protocol. Exradin-A10 Markus type plane parallel chamber used for the measurement was calibrated in terms of dose to water at the reference depth in water. The beam quality index ($R_{50}$) was determined by the radiochromic film with a solid water phantom approximately due to low energy electrons. As a result, the determined electron beam output was $17.0cGy/(min{\cdot}Hz$. The results were used to monitor the accelerator performance during the development procedure.

X-ray Micro-Imaging Technique and Its Application to Micro-Bubbles in an Opaque Tube (X-ray Micro-Imaging 기법 소개 및 불투명 튜브 내부의 마이크로 버블 가시화 연구)

  • Lee Sang-Joon;Kim Seok;Paik Bu-Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.31-34
    • /
    • 2002
  • Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.

  • PDF

Study on the high precision output of full-bride high-voltage inverter (Full-bridge 고전압 인버터의 출력전압 정밀제어에 관한연구)

  • Son, Y.G.;Kwon, S.J.;Jang, S.D.;Suh, J.H.;Oh, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.214-216
    • /
    • 2005
  • The PAL (Pohang Accelerator Laboratory) is persuading to construct a SASE-XFEL facility (PAL XFEL) that supplies coherent X-rays. The bright and stable electron beam is essential for the PAL XEL. The electron beams has to have an emittance of 1.0 mm-mrad, a peak current of 3 kA, and a low energy spread of 1.0 MeV. In order to provide reasonably stable SASE output, the RF stability of 0.02% rms is required for both RF phase and amplitude. This is a technologically challenging issue for PAL XFEL. An inverter technology is to be applied to charge the PFN of a new modulator. Therefore, a new inverter system should provide very stable charging performances. This paper presents the development of an ultra stable klystron-modulator with an inverter power supply.

  • PDF

Preparation of Epoxy-Methacrylate Prepolymer and Electron Beam Curing of Its Mixture with Monomers (Epoxy-Methacrylate Prepolymer의 合成 및 그의 單位體 混合物의 電子線硬化)

  • Pyun Hyung-Chick;Park Wan-Bin;Kim Ki-Yup;Choi Kyu-Suck
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.284-292
    • /
    • 1977
  • Epoxy-methacrylate prepolymer was synthesized from methacrylic acid and a diglycidyl ether type low molecular weight epoxy resin, and the electron beam curing of the prepolymer was studied using styrene and polyethyleneglycol dimethacrylates as comonomers. The esterification was carried out quantitatively without any side reaction adding more than 250∼300ppm hydroquinone and less than $1{\%}$ (wt) triethanolamine by wt. of methacrylate acid, respectively. In the radiation curing under air atmosphere, the maximum gel fraction was observed at 10∼$30{\%}$ monomer contents. The rate of gel formation was decreased by the presence of unreacted epoxy group and acid in the prepolymer and increased with increasing degree of polymerization of polyethyleneglycol block in the dimethacrylates. Considerable oxygen effect in the curing, particularly when polyethyleneglycol dimethacrylate was used as a comonomer, was recognized through the differences of the product properties, though no remarkable differences were found in the rate of gel formation in air and nitrogen atmosphere.

  • PDF

A Study on Dose Distribution of Small Irradiation Field in the Electron Therapy (전자선 치료에 있어서 작은 조사면적의 선량분포에 관한 고찰)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Journal of Yeungnam Medical Science
    • /
    • v.8 no.2
    • /
    • pp.114-120
    • /
    • 1991
  • In electron therapy, low melting point alloy is used for shaping of the field. Electron field shaping material affect the output factor as well as the collimator system. The output factors of electron beams for shaped fields from NELAC-1018 were measured using ionization chamber of Farmer type in water phantom. The output factors of electron beams depend on the incident energy, inherent collimator system and the size of shaped field. Obtained results were followings. 1. In the smaller applicator, output varied extremely according to extent of collimator opening. 2. The higher energy, the output is less varied according to treatment field at small field.

  • PDF

A Study on the Effect of Field Shaping on Dose Distribution of Electron Beams (전자선의 선량분포에 있어서 Field Shaping의 효과에 관한 연구)

  • Kang, Wee-Saing;Cho, Moon-June
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.165-172
    • /
    • 1986
  • In electron therapy, lead cutout or low-melting alloy block is used for shaping the field. Material for shaping electron field affects the output factor as wet 1 as the collimation system. The authors measured the output factors of electron beams for shaped fields from Clinac-18 using ionization chamber of Farmer type in polystyrene phantom. They analyzed the parameters that affect the output factors. The output factors of electron beams depend on the incident energy, collimation system and size of shaped field. For shaped field the variation of output factor for the field size (A/P) has appearence of a smooth curve for all energy and all applicator collimator combination. The output factors for open field deviate from the curves for shaped fields. An output factor for a given field can be calculated by equivalent field method such as A/P method, if a combination of applicator and collimator is fixed.

  • PDF

Photocatalytic activities and surface properties of e-beam treated carbon paper deposited $TiO_2$ using Atomic Layer Deposition (ALD)

  • Kim, Myoung-Joo;Seo, Hyun-Ook;Luo, Yuan;Kim, Kwang-Dae;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.345-345
    • /
    • 2010
  • Thin film of $TiO_2$ deposited on carbon paper was fabricated by atomic layer deposition (ALD) using titanium isopropoxide (TTIP) and $H_2O$ as precursors. In this work, the photocatalytic activities of $TiO_2$ films with and without e-beam treatment were compared. The samples were treated by e-beam using e-beam energy of 1MeV and exposure range between 5 and 15kGy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyleneblue (MB) under UV irradiation (365nm) at room temperature using an UV-vis spectroscopy. The surface properties were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The sample treated by the low radiation dose has more catalytic activity than other ones. SEM images show that the high radiation dose caused the $TiO_2$ to aggregation on carbon paper. Due to the aggregation of $TiO_2$, the partially exposed carbon paper was oxidized.

  • PDF

Study on an Electrostatic Deflector for Ultra-miniaturized Microcolumn to Realize sub-10 nm Ultra-High Resolution and Wide Field of View (10 nm 이하 초고해상도와 광폭 관측시야를 구현하기 위한 극초소형 마이크로컬럼용 정전형 디플렉터 연구)

  • Lee, Hyung Woo;Lee, Young Bok;Oh, Tae-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.29-37
    • /
    • 2021
  • A 7 nm technology node using extreme ultraviolet lithography with a wavelength of 13.5 nm has been recently developed and applied to the semiconductor manufacturing process. Furthermore, the development of sub-3 nm technology nodes continues to be required. In this study, design factors of an electrostatic deflector for an ultra-miniaturized microcolumn system that can realize an electron wavelength of below 1.23 nm with an acceleration voltage of above 1 eV were investigated using a three-dimensional simulator. Particularly, the optimal design of the electrostatic octupole floating deflector was derived by optimizing the design elements and improving the driving method of the 1 keV low energy ultra-miniaturized microcolumn deflector. As a result, the entire wide field of view greater than 330 ㎛ at a working distance of 4 mm was realized with an ultra-high-resolution electron beam spot smaller than 10 nm. The results of this study are expected to be a basis technology for realizing a wafer-scale multi-array microcolumn system, which is expected to innovatively improve the throughput per unit time, which is the biggest drawback of electron beam lithography.