• Title/Summary/Keyword: Low Energy

Search Result 11,994, Processing Time 0.036 seconds

Degradation of Polymer Electrolyte Membrane under Low Current/Low Humidity Conditions (저전류/저가습 조건에서 고분자전해질 막 열화)

  • Kim, Tae-Hee;Lee, Jung-Hun;Lee, Ho;Lim, Tae-Won;Park, Kwon-Pil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.157-163
    • /
    • 2007
  • During PEMFC operation, low current and low humidity conditions accelerate the degradation of perfluorosulfonic acid membrane. But, there have been no studies that clearly explain why these conditions accelerate the membrane degradation. In this study, the hydrogen permeability through the membrane, I-V polarization of MEA, fluoride emission rate(FER) in effluent water were measured during cell operation under low current densities and low relative humidity(RH). The experimental results were evaluated with oxygen radical mechanism the most commonly known for membrane degradation. It seems that low RH of anode is a good condition for $H{\cdot}$ radical formation on the Pt catalyst and the low current condition accelerates the $H{\cdot}$ to form $HO_2{\cdot}$ radical attacking the polymer membrane.

Comparative Analysis of Scenarios for Reducing GHG Emissions in Korea by 2050 Using the Low Carbon Path Calculator (저탄소 경로 모형을 활용한 2050년 한국의 온실가스 감축 시나리오 비교 분석)

  • Park, Nyun-Bae;Yoo, Jung-Hwa;Jo, Mi-Hyun;Yun, Seong-Gwon;Jeon, Eui Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.556-570
    • /
    • 2012
  • The Low Carbon Path Calculator is an excel-based model to project greenhouse gas emissions from 2009 to 2050, which is based on the 2050 Pathways Calculator developed by the UK Department of Energy and Climate Change (DECC). Scenarios are developed to reduce GHG emissions in Korea at 50% based on 2005 levels by 2050 using a Low Carbon Path Calculator. They were classified in four different cases, which are high renewable, high nuclear, high CCS and mixed option scenarios. The objectives of this study are to compare scenarios in terms of GHG emissions, final energy, primary energy and electricity generation and examine the usefulness of that model in terms of identifying pathways towards a low carbon emission society. This model will enhance the understanding of the pathways toward a low carbon society and the level of the climate change policy for policy makers, stakeholders, and the public. This study can be considered as a reference for developing strategies in reducing GHG emissions in the long term.

Low-cost Contact formation of High-Efficiency Crystalline Silicon Solar Cells by Plating

  • Kim D. S.;Lee E. J.;Kim J.;Lee S. H.
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.37-43
    • /
    • 2005
  • High-efficiency silicon solar cells have potential applications on mobile electronics and electrical vehicles. The fabrication processes of the high efficiency cells necessitate com placated fabrication precesses and expensive materials. Ti/Pd/Ag metal contact has been used only for limited area In spite of good stability and low contact resistance because of Its expensive material cost and precesses. Screen printed contact formed by Ag paste causes a low fill factor and a high shading loss of commercial solar cells because of high contact resistance and a low aspect ratio. Low cost Ni/Cu metal contact has been formed by using a low cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting In an energy conversion efficiency of $20.2\%\;on\;0.50{\Omega}cm$ FZ wafer. Tapered contact structure has been applied to large area solar cells with $6.7\times6.7cm^2$ in order to reduce power losses by the front contact The tapered front metal contact Is easily formed by the electroplating technique producing $45cm^2$ solar cells with an efficiency of $21.4\%$ on $21.4\%\;on\;2{\Omega}cm$ FZ wafer.

  • PDF

Stundy on Simulation Characteristics of Low Velocity Impact Test of Carbon/Epoxy Composite Plates Manufactured by Filament Winding Method (필라멘트 와인딩 공법으로 제작한 탄소섬유/에폭시 복합소재 평판의 저속 낙하 충격시험 시뮬레이션에 관한 연구)

  • BYUN, JONGIK;KIM, JONGLYUL;HEO, SEOKBONG;KIM, HANSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.190-196
    • /
    • 2018
  • Carbon fiber/epoxy composites are typical brittle materials and have low impact properties. Recently, it is important to investigate impact characteristics of carbon fiber composites because of increasing use as automobile parts and high pressure hydrogen vessels of fuel cell electric vehicles for light weight. In this study, the low velocity impact properties of carbon fiber/epoxy composites fabricated by a filament winding method are studied. The low velocity impact properties were measured by performing tests according to ASTM D7136. The low velocity impact simulations were carried out using commercial structural analysis software, Abaqus. The absorbed energy and the delamination shapes were compared between the experimental and simulation results. The numerical analysis method showed that the absorbed energy decreased with the reduced number of cohesive elements in the composite models.

The Core Urban Design Strategies of Tall Building - Low Carbon Community

  • Liu, Enfang;Fan, Wenli;Pan, Jianing;Li, Jianqiang
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • Tall building has some controversial aspects with low carbon city, but it is still a sensible choice for the metropolitan city. This paper aims to develop holistic urban design strategies to minimize impacts on the environment, increase energy efficiency and improve the quality of living in tall building communities by utilizing tall building characteristics. It puts forward the concept of integrated tall building-low carbon community design from the perspective of urban design, and summarizes five core strategies: Temporal state based on energy use, Complementary energy use state based on functions, Spatial state based on regional environment features, Transportation state based on low-carbon lifestyle and Waste utilization state based on tall building characteristics. It also applies the strategies to a practical project. The results show that the proposed urban design strategies are available approaches to mitigate the side effects of tall building on low carbon city.

Parametric Study of a Fixed-blade Runner in an Ultra-low-head Gate Turbine

  • Mohamed Murshid Shamsuddeen;Duc Anh Nguyen;Jin-Hyuk Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • Ultra-low-head is an unexplored classification among the sites in which hydroelectric power can be produced. This is typically owing to the low power output and the economic value of the turbines available in this segment. A turbine capable of operating in an ultra-low-head condition without the need of a dam to produce electricity is developed in this study. A gate structure installed at a shallow water channel acting as a weir generates artificial head for the turbine mounted on the gate to produce power. The turbine and generator are designed to be compact and submersible for an efficient and silent operation. The gate angle is adjustable to operate the turbine at varying flow rates. The turbine is designed and tested using computational fluid dynamics tools prior to manufacturing and experimental studies. A parametric study of the runner blade parameters is conducted to obtain the most efficient blade design with minimal hydraulic losses. These parameters include the runner stagger and runner leading edge flow angles. The selected runner design showed improved hydraulic characteristics of the turbine to operate in an ultra-low-head site with minimal losses.

Effect of dietary energy levels and phase feeding by protein levels on growth performance, blood profiles and carcass characteristics in growing-finishing pigs

  • Hong, J.S.;Lee, G.I.;Jin, X.H.;Kim, Y.Y.
    • Journal of Animal Science and Technology
    • /
    • v.58 no.10
    • /
    • pp.37.1-37.10
    • /
    • 2016
  • Background: Providing of insufficient nutrients limits the potential growth of pig, while feeding of excessive nutrients increases the economic loss and causes environment pollution. For these reasons, phase feeding had been introduced in swine farm for improving animal production. This experiment was conducted to evaluate the effects of dietary energy levels and phase feeding by protein levels on growth performance, blood profiles and carcass characteristics in growing-finishing pigs. Methods: A total of 128 growing pigs ([Yorkshire ${\times}$ Landrace] ${\times}$ Duroc), averaging $26.62{\pm}3.07kg$ body weight, were assigned in a $2{\times}4$ factorial arrangement with 4 pigs per pen. The first factor was two dietary energy level (3,265 kcal of ME/kg or 3,365 kcal of ME/kg), and the second factor was four different levels of dietary protein by phase feeding (1growing(G)-2finishing(F) phases, 2G-2F phases, 2G-3F phases and 2G-3F phases with low CP requirement). Results: In feeding trial, there was no significant difference in growth performance. The BUN concentration was decreased as dietary protein level decreased in 6 week and blood creatinine was increased in 13 week when pigs were fed diets with different dietary energy level. The digestibility of crude fat was improved as dietary energy levels increased and excretion of urinary nitrogen was reduced when low protein diet was provided. Chemical compositions of longissimus muscle were not affected by dietary treatments. In backfat thickness ($P_2$) at 13 week, pigs fed high energy diet had thicker backfat thickness (P = 0.06) and pigs fed low protein diet showed the trend of backfat thinness reduction (P = 0.09). In addition, water holding capacity was decreased (P = 0.01) and cooking loss was increased (P = 0.07) as dietary protein level reduced. When pigs were fed high energy diet with low subdivision of phase feeding, days to 120 kg market weight was reached earlier compared to other treatments. Conclusion: Feeding the low energy diet and subdivision of growing-finishing phase by dietary protein levels had no significant effect on growth performance and carcass characteristics. Also, phase feeding with low energy and low protein diet had no negative effects on growth performance, carcass characteristics but economical profits was improved.

Effect of dietary energy levels on growth performance, blood parameter and intestinal morphology of Pekin ducks in low ambient temperature

  • Kim, Chan Ho;Kang, Hwan Ku;Kim, Hyun Soo
    • Journal of Animal Science and Technology
    • /
    • v.61 no.6
    • /
    • pp.305-312
    • /
    • 2019
  • This study was carried out to investigate the effects of dietary energy levels on growth performance, blood parameter, and intestinal morphology of Pekin ducks in low temperature. A total of 500, 21-d-old Pekin ducks (initial BW = 1,089 ± 5.21 g) were evenly assigned to five dietary treatments (2,950, 3,000, 3,050, 3,100, or 3,150 kcal AME/kg, calculated on an as-is basis) with four replicates (pens) for each treatment (25 ducks per pen). During the experiment, hens were provided with feed and water ad libitum. Overall, increasing dietary energy levels corresponded to an increase of final body weight and body weight gain (linear, p < 0.01). Feed intake decreased (linear, p < 0.01) and feed conversion ratio increased (linear, p < 0.01) with increasing levels of energy. There were no significant differences (p < 0.05) in the level of leukocytes between groups. However, heterophils decreased (quadratic, p < 0.05) and lymphocytes increased (linear, p < 0.01) as inclusion of dietary energy levels increased. The H/L ratio increased (linear, p < 0.01) with increasing dietary energy levels while serum corticosterone levels decreased at overall experimental periods. Triglycerides increased (linear and quadratic, p < 0.05) with increasing dietary energy levels. There were no significant changes in villus height or crypt depth of the jejunum at overall experimental. In conclusion, increasing concentrations of dietary energy levels up to 2,950-3,150 kcal/kg in diet. Additionally, 3,150 kcal/kg dietary energy had been revealed more beneficial and could be practiced as protective management for the Pekin ducks reared under low ambient temperature (8℃ to 10℃).

Low-Power Walking Compensation Method for Biped Robot Based on Consumption Energy Analysis (소비 에너지 분석을 통한 이족로봇의 저전력 보행 보정 기법)

  • Lee, Chang-Seok;Na, Doo-Young;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.793-798
    • /
    • 2010
  • In this paper we propose a low-power walking compensation method for biped robot based on consumption energy analysis. Firstly, basic walking motions that can reduce energy consumption of robot movements are implemented based on consumption energy analysis according to robot axes. We define knee bent motion as a basic walking motion. It can improve energy consumption and motion stability by lowering center of gravity of the biped robot. We analyze consumption energy of left and right leg of the robot using motor currents and propose a compensation method of walking motions to reduce unbalance of consumption energy between left leg and right leg. It can also improve energy consumption and walking stability of the robot. The proposed low-power compensation method based on consumption energy analysis is verified by walking experiments of a small biped robot with an embedded system.

Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation (리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구)

  • Yoon, Hyun-Ki;Ha, Sang-Hyeon;Lee, Jaein
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.