• 제목/요약/키워드: Low Earth Orbit Meteorological Satellite

검색결과 12건 처리시간 0.029초

저궤도 기상위성 탑재체 개발을 위한 요구 규격 연구 (A Study on the Required Specification for the Development of Low Earth Orbit Meteorological Satellite Payload)

  • 은종원
    • 한국위성정보통신학회논문지
    • /
    • 제8권2호
    • /
    • pp.74-79
    • /
    • 2013
  • 저궤도 기상위성 탑재체 개발을 위한 요구 사항 (안)을 도출하기 위하여 국외 저궤도 기상위성 탑재체 개발 현황과 저궤도 기상위성 탑재체 사용자 요구사항 설문조사 및 분석을 수행하였다. 본 본문에서는 저궤도 기상위성 탑재체 주요 성능 요구 사항인 주파수 요구 사항, 복사 측정 요구 사항, 공간 요구 사항, 안테나 효율 등의 기술적 요구사항과 저궤도 기상위성 사용자 요구사항을 기반으로 저궤도 기상위성 탑재체 주요 성능 요구 규격을 제시하였다.

저궤도 기상위성 개발 기술 기준에 관한 연구 (A study on the Technological Criteria for the Development of an Low Earth Orbit Meteorological Satellite)

  • 은종원
    • 한국위성정보통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.116-121
    • /
    • 2012
  • 저궤도 기상위성 개발을 위한 기술기준을 도출하기 위하여 이론적으로 접근, 적외선 및 마이크로파 탑재체 센서의 특성 분석하였다. 또한, 저궤도 기상위성 탑재체 개발과 관련하여 현존하는 국외 저궤도 기상위성에 탑재된 마이크로파센서들의 채널요구사항 및 위성체 접속 요구사항을 분석하였다. 본 논문에서는 저궤도 기상위성시스템의 접속 요구사항으로 다목적위성 버스와 소형위성 플렛폼인 CAS 500, 그리고 위성관제시스템의 핵심 서브시스템 및 주요 기능 요구사항을 제시 하였다.

INTRODUCTION OF AOCS HARDWARE CONFIGURATION FOR COMS

  • Park, Young-Woong;Park, Keun-Joo;Lee, Hoon-Hee;Ju, Gwang-Hyeok
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.207-210
    • /
    • 2007
  • A part of the big differences between LEO(Low Earth Orbit) and GEO(Geostationary Earth Orbit) satellite is that transfer orbit is used or not or what tolerance of the position on the mission orbit is permitted. That is to say, the transfer orbit is not used and the constraint of orbit position is not adapted on LEO satellite. Whereas for GEO satellite case, the transfer orbit shall be used due to the very high altitude and the satellite shall be stayed in the station keeping box which is permitted on the mission orbit. These phases are functions for AOCS mission. The aim of this paper is to introduce the AOCS hardware configuration for COMS (Communication, Ocean and Meteorological Satellite). The AOCS hardware of COMS consist of 3 Linear Analogue Sun Sensors (LIASS), 3 Bi-Axis Sun Sensors (BASS), 2 Infra-Red Earth Sensors (IRES), 3 Fiber Optical Gyroscopes (FOG), 5 momentum wheels and 14 thrusters. In this paper, each component is explained how to be used, how to locate and what relation between the AOCS algorithm and these components.

  • PDF

Evaluation of GSICS Correction for COMS/MI Visible Channel Using S-NPP/VIIRS

  • Jin, Donghyun;Lee, Soobong;Lee, Seonyoung;Jung, Daeseong;Sim, Suyoung;Huh, Morang;Han, Kyung-soo
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.169-176
    • /
    • 2021
  • The Global Space-based Inter-Calibration System (GSICS) is an international partnership sponsored by World Meteorological Organization (WMO) to continue and improve climate monitoring and to ensure consistent accuracy between observation data from meteorological satellites operating around the world. The objective for GSICS is to inter-calibration from pairs of satellites observations, which includes direct comparison of collocated Geostationary Earth Orbit (GEO)-Low Earth Orbit (LEO) observations. One of the GSICS inter-calibration methods, the Ray-matching technique, is a surrogate approach that uses matched, co-angled and co-located pixels to transfer the calibration from a well calibrated satellite sensor to another sensor. In Korea, the first GEO satellite, Communication Ocean and Meteorological Satellite (COMS), is used to participate in the GSICS program. The National Meteorological Satellite Center (NMSC), which operated COMS/MI, calculated the Radiative Transfer Model (RTM)-based GSICS coefficient coefficients. The L1P reproduced through GSICS correction coefficient showed lower RMSE and Bias than L1B without GSICS correction coefficient applied. The calculation cycles of the GSICS correction coefficients for COMS/MI visible channel are provided annual and diurnal (2, 5, 10, 14-day), but long-term evaluation according to these cycles was not performed. The purpose of this paper is to perform evaluation depending on the annual/diurnal cycles of COMS/MI GSICS correction coefficients based on the ray-matching technique using Suomi-NPP/Visible Infrared Imaging Radiometer Suite (VIIRS) data as reference data. As a result of evaluation, the diurnal cycle had a higher coincidence rate with the reference data than the annual cycle, and the 14-day diurnal cycle was the most suitable for use as the GSICS correction coefficient.

SYSTEM DESIGN OF THE COMS

  • Lee Ho-Hyung;Choi Seong-Bong;Han Cho-Young;Chae Jong-Won;Park Bong-Kyu
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.645-648
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite), a multi-mission geo-stationary satellite, is being developed by KARl. The first mission of the COMS is the meteorological image and data gathering for weather forecast by using a five channel meteorological imager. The second mission is the oceanographic image and data gathering for marine environment monitoring around Korean Peninsula by using an eight channel Geostationary Ocean Color Imager(GOCI). The third mission is newly developed Ka-Band communication payload certification test in space by providing communication service in Korean Peninsula and Manjurian area. There were many low Earth orbit satellites for ocean monitoring. However, there has never been any geostationary satellite for ocean monitoring. The COMS is going to be the first satellite for ocean monitoring mission on the geo-stationary orbit. The meteorological image and data obtained by the COMS will be distributed to end users in Asia-Pacific area and it will contribute to the improved weather forecast.

  • PDF

정지궤도 기상 영상기 MTF 특성 분석

  • 조영민
    • 항공우주기술
    • /
    • 제2권1호
    • /
    • pp.182-189
    • /
    • 2003
  • 국내 최초로 통신, 해양, 기상 3분야 복합 임무를 수행하는 정지궤도 위성인 통신해양기상위성이 2003년부터 개발되어 2008년 발사 예정이다. 본 연구에서는 통신해양기상위성의 기상관측 탑재체인 기상 영상기(Imager)의 개발을 위해 정지궤도 위성 기상 영상기의 Modulation Transfer Function (MTF) 특성을 연구하고 현재 운영 또는 개발 중인 정지궤도 기상 영상기 기술을 고려하여 기상 영상기의 분광 채널별 MTF 한계값을 분석하였다. 10㎛ 이상의 장파장 적외선에서 회절 현상으로 인해 현저히 낮은 MTF가 얻어질 수 있으므로 기상 영상기의 개발시 장파장 적외선 채널의 MTF 성능에 대한 주의가 요구된다.

  • PDF

태풍 수치모의에서 GPS-RO 인공위성을 사용한 관측 자료동화 효과 (Impact of GPS-RO Data Assimilation in 3DVAR System on the Typhoon Event)

  • 박순영;유정우;강남영;이순환
    • 한국환경과학회지
    • /
    • 제26권5호
    • /
    • pp.573-584
    • /
    • 2017
  • In order to simulate a typhoon precisely, the satellite observation data has been assimilated using WRF (Weather Research and Forecasting model) three-Dimensional Variational (3DVAR) data assimilation system. The observation data used in 3DVAR was GPS Radio Occultation (GPS-RO) data which is loaded on Low-Earth Orbit (LEO) satellite. The refractivity of Earth is deduced by temperature, pressure, and water vapor. GPS-RO data can be obtained with this refractivity when the satellite passes the limb position with respect to its original orbit. In this paper, two typhoon cases were simulated to examine the characteristics of data assimilation. One had been occurred in the Western Pacific from 16 to 25 October, 2015, and the other had affected Korean Peninsula from 22 to 29 August, 2012. In the simulation results, the typhoon track between background (BGR) and assimilation (3DV) run were significantly different when the track appeared to be rapidly change. The surface wind speed showed large difference for the long forecasting time because the GPS-RO data contained much information in the upper level, and it took a time to impact on the surface wind. Along with the modified typhoon track, the differences in the horizontal distribution of accumulated rain rate was remarkable with the range of -600~500 mm. During 7 days, we estimated the characteristics between daily assimilated simulation (3DV) and initial time assimilation (3DV_7). Because 3DV_7 demonstrated the accurate track of typhoon and its meteorological variables, the differences in two experiments have found to be insignificant. Using observed rain rate data at 79 surface observatories, the statistical analysis has been carried on for the evaluation of quantitative improvement. Although all experiments showed underestimated rain amount because of low model resolution (27 km), the reduced Mean Bias and Root-Mean-Square Error were found to be 2.92 mm and 4.53 mm, respectively.

RETRIEVING AEROSOL AMOUNT FROM GEOSTATIONARY SATELLITE

  • Yoon, Jong-Min;Kim, Jhoon
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.232-235
    • /
    • 2006
  • Using 30 days of hourly visible channel data and DIScrete Ordinate Radiative Transfer (DISORT) model (6S), Aerosol optical depth (AOD) at $0.55{\mu}m$ was retrieved over the East Asia. In contrast with the AOD retrieval using low-earth-orbit satellites such as MODIS (Moderate-Res olution Spectroradiometer) or MISR (Multiangle Imaging SpectroRadiometer), this algorithm with geostationary satellite can improve the monitoring of AOD without the limitation of temporal resolution. Due to the limited number of channels in the conventional meteorological imager onboard the geostationary satellite, an AOD retrieval algorithm utilizing a single visible channel has been introduced. This single channel algorithm has larger retrieval error of AOD than other multiple-channel algorithm due to errors in surface reflectance and atmospheric property. In this study, the effects of manifold atmospheric and surface properties on the retrieval of AOD from the geostationary satellite, are investigated and compared with the AODs from AERONET and MODIS. To improve the accuracy of retrieved AOD, efforts were put together to minimize uncertainties through extensive sensitivity tests. This algorithm can be utilized to retrieve aerosol information from previous geostationary satellite for long-term climate studies.

  • PDF

Data Quality Determination of Radio Occultation in moist troposphere

  • Yeh, Wen-Hao;Chiu, Tsen-Chieh;Liou, Yuei-An;Huang, Cheng-Yung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.442-444
    • /
    • 2007
  • How to observe the atmosphere is a subject of atmospheric research. The meteorological satellites and the ground states are used to do observation. However, both ways do not satisfy the requirement of scientists, especially the profiles of atmosphere on the ocean and the data for global atmosphere. Radio occultation (RO) technique, which has been used in planet science, is a method to solve the problem. In RO technique, the low Earth orbit (LEO) satellite receives the two frequency signal of Global Positioning System (GPS) satellite. The excess phase of the signal is calculated to retrieve the profiles of atmosphere parameters. In moist troposphere, the fluctuations appear in the phase of the signal and open loop (OL) is used to resolve it. The quality of the GPS signal generally deteriorates as the altitude decreases. In the procedure, the SNR of the GPS signal is used as the criterion. However, the SNR decreases with fluctuation which makes it difficult to locate the data of poor quality. In this paper, the phase of the signal will be used as part of the criterion.

  • PDF

동아시아 대기질 예보 및 감시를 위한 모델링 기술의 현황과 발전 방향 (Current Status and Development of Modeling Techniques for Forecasting and Monitoring of Air Quality over East Asia)

  • 박래설;한경만;송철한;박미은;이소진;홍성유;김준;우정헌
    • 한국대기환경학회지
    • /
    • 제29권4호
    • /
    • pp.407-438
    • /
    • 2013
  • Current status and future direction of air quality modeling for monitoring and forecasting air quality in East Asia were discussed in this paper. An integrated air quality modeling system, combining (1) emission processing and modeling, (2) meteorological model simulation, (3) chemistry-transport model (CTM) simulation, (4) ground-based and satellite-retrieved observations, and (5) data assimilation, was introduced. Also, the strategies for future development of the integrated air quality modeling system in East Asia was discussed in this paper. In particular, it was emphasized that the successful use and development of the air quality modeling system should depend on the active applications of the data sets from incumbent and upcoming LEO/GEO (Low Earth Orbit/Geostationary Earth Orbit) satellites. This is particularly true, since Korea government successfully launched Geostationary Ocean Color Imager (GOCI) in June, 2010 and has another plan to launch Geostationary Environmental Monitoring Spectrometer (GEMS) in 2018, in order to monitor the air quality and emissions in/around the Korean peninsula as well as over East Asia.