• Title/Summary/Keyword: Low Dose Exposure

Search Result 481, Processing Time 0.027 seconds

Manganese Distribution in Brains of Sprague Dawley Rats after 60 Days of Stainless Steel Welding-Fume Exposure

  • Yu, Il-Je;Park, Jung-Duck;Park, Eon-Sub;Song, Kyung-Seuk;Han, Kuy-Tae;Han, Jeong-Hee;Chung, Yong-Hyun;Choi, Byung-Sun;Chung, Kyu-Hyuck;Cho, Myung-Haeng
    • Environmental Mutagens and Carcinogens
    • /
    • v.23 no.3
    • /
    • pp.85-93
    • /
    • 2003
  • Welders working in a confined space, like in the shipbuilding industry, are at risk of being exposed to high concentrations of welding fumes and developing pneumoconiosis or other welding-fume exposure related diseases. Among such diseases, manganism resulting from welding-fume exposure remains a controversial issue, as the movement of manganese into specific brain regions has not been clearly established. Accordingly, to investigate the distribution of manganese in the brain after welding-fume exposure, male Sprague Dawley rats were exposed to welding fumes generated from manual metal arc stainless steel (MMA-SS) at concentrations of $63.6{\pm}4.1$ $mg/m^3$ (low dose, containing 1.6 $mg/m^3$ Mn) and $107.1{\pm}6.3$ $mg/m^3$ (high dose, containing 3.5 $mg/m^3$ Mn) total suspended particulates for 2 hrs per day, in an inhalation chamber over a 60-day period. Blood, brain, lungs and liver samples were collected after 2 hr, 15, 30, and 60 days of exposure and the tissues analyzed for their manganese concentrations using an atomic absorption spectrophotometer. Although dose- and time-dependent increases in the manganese concentrations were found in the lungs and livers of the rats exposed for 60 days, only slight manganese increases were observed in the blood during this period. Major statistically significant increases in the brain manganese concentrations were detected in the cerebellum after 15 days of exposure and up until 60 days. Slight increases in the manganese concentrations were also found in the substantia nigra, basal ganglia (caudate nucleus, putamen, and globus pallidus), temporal cortex, and frontal cortex, thereby indicating that the pharmacokinetics and distribution of manganese inhaled from welding fumes would appear to be different from those resulting from manganese-only exposure.

  • PDF

A Study on Radiographical Conditions and Exposure Doses During Chest Radiography at Medical Facilities in Pusan (부산지역 의료기관의 흉부촬영 조건과 피폭선량에 관한 조사연구)

  • Jeon, Sung-Oh;Cho, Young-Ha
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.49-55
    • /
    • 1997
  • This study was carried out to investigate radiographical and operating conditions of X-ray units and exposure doses to patients during chest radiography, so that the results could provide basic data used for reducing the exposure dose and for providing the diagnostic information with better quality. The conditions and exposure doses of 100 X-ray units mainly used for chest radiography were examined and also 100 radiological technologists mainly handling those apparatus at 76 medical facilities in Pusan were surveyed using a questionnaire from October 1 to December 31 in 1995. The following results were obtained from the study : 1. It was found that most units were capable of taking a high tube voltage radiography by showing 67% of the units equipped with the maximum tube voltage of 150 kV, 94% with more than 500 mA for the rating capacity and 85% with the full wave type of a signal phase. 2. For actual chest radiographical conditions, however, 80% of the units were operated at $60{\sim}100\;kVp$ and only 14% at 100 kVp and over for the high tube voltage. 3. The average exposure time was less than 0.1 second, and eighty four percent of the units adapted the X-ray tube currents ranging from 200 to 300 mA, 80% the focus-film distances between 180 and 210 cm, and 63% the focus sizes of more than 2.0 mm. 4. Most units(98%) employed additional filters made of aluminum, 75% the thickness of filters less than 2.0 mm, and only 2 units the compound filters. 5. Ortho chromatic system was only adopted in 13% of screen film system for the units, and 73% used the grid ratio at 8 : 1 for the low tube voltage during chest radiography. 6. The average exposure dose of all X-ray units during chest radiography was $371\;{\mu}Sv$ with a difference of about 16 times between the minimum to the maximum, and $386\;{\mu}Sv$ both at hospitals and at health centers, followed by $380\;{\mu}Sv$ at general hospitals and $263\;{\mu}Sv$ at university hospitals without showing any statistically significant differences. In conclusion, since patients during chest radiography at medical facilities in Pusan exposed to high levels of radiation, it is recommended that appropriate added filters and grids necessary for the high tube voltage radiography and high-speed screen systems should be adopted and used as soon as possible in order to reduce exposure dose to the patients.

  • PDF

A Study on the Comparative Analysis of Images and Doses According to Tube Orientation During Anterior-Posterior Axial Projection Examination of the Skull (머리뼈 전-후 축 방향검사 시 Tube 방향설정에 따른 표면선량과 영상분석에 관한 연구)

  • Jeong, Sung-Hun;Yoo, Je-hyeon;Lim, Cheong-Hwan
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.301-306
    • /
    • 2021
  • The skull has peripheral organs such as the crystalline lens and thyroid gland, which are highly radiosensitive, but the examination is performed without considering the uneven dose distribution due to the heel effect at the time of the current Skull Town's examination. However, no studies have been conducted on the exposure dose of surrounding organ tissues due to the difference in image density due to the heel effect and the non-uniformity of the dose. Using the cathode (-) and anode (+) set on the Tube to measure the scattered radiation along the Tube direction as a guide, change 30° and 37° in the cathode direction and 30° and 37° in the anode direction. It was given and investigated 5 times to obtain scattered radiation. image measurements were SNR, PSNR, RMSE, and MAE. Measurement results Measurement results of surrounding organ doses when the Tube direction was 30° and 37° The dose was low when the direction was cathodic in all organs (p<0.000). Both cathodes were higher in the image measurements(p<0.04). Continuous research may be needed for diagnostically valuable imaging and minimization of patient exposure dose.

A Study on the Proper Chest Exposure Conditions of Mobile Digital X-ray Unit by Exposure Index (Exposure Index를 이용한 이동형 디지털 X선 장치의 흉부촬영 적정노출조건에 관한 연구)

  • Kim, Jae-In;Lee, Yang-Sub;Jang, Dong-Soo;Jung, Min-Cheol;Bae, Seung-Ho;Lee, Kwan-Sub;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.3
    • /
    • pp.139-144
    • /
    • 2011
  • The purpose of this report is recommending a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The experiment was performed with mobile digital X-ray unit and used a acrylic phantom for exposure index measurement. Exposure modality was kVp, mAs, SID. After every exposure, make a data sheet for characteristic curve of detector response. The equipment performed Mobile digital X-ray unit provide the user with values ralated to the incident exposure(air kerma)to the digital detector. They are showed as a logarithmic function shaped. As a result, DEI means a relative measure of exposure to the detector, as compared to the expected exposure for a particular anatomical view. Radiographic technique is the combination of factors used to exposure an anatomical part to produce a high quality radiography and technique charts used most commonly by radiographers to produce consistently exposure level which patient dose can be kept acceptably low.

  • PDF

Preliminary Study on Applicability of Accumulate Personal Neutron Dosimeter for Cosmic-ray Exposure of Aviators (운항승무원의 우주방사선 피폭 평가에 있어 누적형 개인 중성자 선량계의 적용가능성 예비 연구)

  • Kim, Hyeong-Jin;Chang, Byung-Uck;Byun, Jong-In;Song, Myeong Han;Kim, Jung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.44-51
    • /
    • 2013
  • ICRP recommended that cosmic ray exposure to the pilot and cabin crew would be considered as an occupational exposure due to their relatively high exposure. Since 2012 with the Act No. 10908 (Natural radiation management), the guideline of cosmic ray exposure to the pilot was established in Korea. The applicability of the solid-state nuclear track detector for personal dose assessment of pilot and cabin crew was evaluated. Dose linearity and angle dependence of dosimeters to the neutron were evaluated by $^{252}Cf$ neutron emitting source. The track density has a good agreement with the dose ($r^2$=0.99) and highly dependent on the degree of an angular of the dosimeter to the neutron source. In addition, the dosimeters (SSNTD) were exposed to cosmic ray in an aircraft during its cruising for more than two months in collaboration with Airline Pilots Association of Korea. Although the correlation between the track density from aircraft cruising altitude and expected neutron dose is low, however RSNS dosimeter could be used for personal neutron dosimeter. For application of RSNS as a personal dosimeter for pilot and cabin crew, additional studies are required.

In vivo Genotoxicity of Silver Nanoparticles after 90-day Silver Nanoparticle Inhalation Exposure

  • Kim, Jin-Sik;Sung, Jae-Hyuck;Ji, Jun-Ho;Song, Kyung-Seuk;Lee, Ji-Hyun;Kang, Chang-Soo;Yu, Il-Je
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • Objectives: The antimicrobial activity of silver nanoparticles has resulted in their widespread use in many consumer products. Yet, despite their many advantages, it is also important to determine whether silver nanoparticles may represent a hazard to the environment and human health. Methods: Thus, to evaluate the genotoxic potential of silver nanoparticles, in vivo genotoxicity testing (OECD 474, in vivo micronuclei test) was conducted after exposing male and female Sprague-Dawley rats to silver nanoparticles by inhalation for 90 days according to OECD test guideline 413 (Subchronic Inhalation Toxicity: 90 Day Study) with a good laboratory practice system. The rats were exposed to silver nanoparticles (18 nm diameter) at concentrations of $0.7\;{\times}\;10^6$ particles/$cm^3$ (low dose), $1.4\;{\times}\;10^6$ particles/$cm^3$ (middle dose), and $2.9\;{\times}\;10^6$ particles/$cm^3$ (high dose) for 6 hr/day in an inhalation chamber for 90 days. The rats were killed 24 hr after the last administration, then the femurs were removed and the bone marrow collected and evaluated for micronucleus induction. Results: There were no statistically significant differences in the micronucleated polychromatic erythrocytes or in the ratio of polychromatic erythrocytes among the total erythrocytes after silver nanoparticle exposure when compared with the control. Conclusion: The present results suggest that exposure to silver nanoparticles by inhalation for 90 days does not induce genetic toxicity in male and female rat bone marrow in vivo.

Analysis on Fluorine-18 Shielding Efficiency of Double Shield Apron using Acrylic (아크릴을 활용한 이중 차페 Apron의 F-18 차폐 효율 분석)

  • Lee, Gwon-Seong;Jeon, Yeo-Ryeong;Kim, Yong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.957-964
    • /
    • 2021
  • Fluorine-18 used in PET/CT scans is a radioactive isotope that emits positrons, and high energy annihilation gamma rays and beta rays cause exposure to radiation workers. In this study, as part of a plan to reduce the exposure dose of radiation workers working in the Department of Nuclear Medicine, the cause of the low shielding efficiency of Apron for F-18 was identified, and the effectiveness of the Apron double-shielded with acrylic was evaluated. L-Block, Apron+acrylic, Apron, Acrylic+Apron, and Acrylic five shields are used to measure the dose, and the tendencies were compared by performing a Monte Carlo simulation. As a result, it was found that the shielding rate of Apron double shielded with acrylic was about 4 to 8% higher than that of Apron single shielded. To the extent that it does not significantly affect the user's activity, double-shielded personal protective clothing with an appropriate acrylic thickness could help reduce radiation workers' exposure.

Risk Assessment from Heterogeneous Energy Deposition in Tissue. The Problem of Effects from Low Doses of Ionizing Radiation

  • Le, Feinendegen;J, Booz
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 1992
  • Low doses of ionizing radiation from external or internal sources cause heterogeneous distribution of energy deposition events in the exposed biological system. With the cell being the individual element of the tissue system, the fraction of cells hit, the dose received by the hit, and the biological response of the cell to the dose received eventually determine the effect in tissue. The hit cell may experience detriment, such as change in its DNA leading to a malignant transformation, or it may derive benefit in terms of an adaptive response such as a temporary improvement of DNA repair or temporary prevention of effects from intracellular radicals through enhanced radical detoxification. These responses are protective also to toxic substances that are generated during normal metabolism. Within a multicellular system, the probability of detriment must be weighed against the probability of benefit through adaptive responses with protection against various toxic agents including those produced by normal metabolism. Because irradiation can principally induce both, detriment and adaptive responses, one type of affected cells may not be simply summed up at the expense of cells with other types of effects, in assessing risk to tissue. An inventory of various types of effects in the blood forming system of mammals, even with large ranges of uncertainty, uncovers the possibility of benefit to the system from exposure to low doses of low LET radiation. This experimental approach may complement epidemiological data on individuals exposed to low doses of ionizing radiation and may lead to a more rational appraisal of risk.

  • PDF

A Study on the Development of High-sensitivity AEC-sensor for Minimization of Dose Creep in Diagnostic Imaging System (진단영상 시스템에서 선량크리프 현상의 최소화를 위한 고감도 AEC 센서에 관한 연구)

  • Kim, Kyo-Tae;Han, Moo-Jae;Heo, Ye-Ji;Kim, Joo-Hee;Kang, Sang-Sik;Park, Ji-Koon;Nam, Sang-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.321-325
    • /
    • 2016
  • Dose creep is one of clinical errors that arises from the tester's inexperience or carelessness, and according to Task Group #116 of American Association of Physicists in Medicine, its continued occurrence is being reported in the digital method. At this point, the demand for an automatic exposure control device that minimizes the dose creep phenomenon and can improve reproducibility is increasing. In this study is to consider the automatic exposure control device sensor that can is not only easy to produce, but also reduce the dose creep phenomenon by conducting a research on high-efficient semiconductor sensor. As a result, the Intrinsic-type and PIN-type sensors have excellent optical property compared to Ref sensor, would have less shading effect, and have relatively low sensitivity, but would provide accurate feedback signals to automatic exposure control device with its consistent tendency according to exposure condition changes.

A Study of Changes in the Primary Dose Penetrating the Protective Apron on SID in X-ray Radiography (X선촬영에서 보호앞치마를 투과한 1차 선량의 SID별 변화)

  • Choi, Seong-Kwan
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.501-507
    • /
    • 2016
  • This study is to figure out the amount of primary X-ray generated in SID 50cm, 1m, and 2m penetrating protective aprons in X-ray radiography for hands, skull, and lumbar spine. Results are as follows: Firstly, the exposure dose of primary X-ray which is low such as that of hand X-ray may be reduced by 270 times if protective aprons are worn, but it still slightly penetrates 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Secondly, the exposure dose of primary X-ray which is moderate such as that of skull X-ray may be reduced by 22 times if protective aprons are worn, but it still fairly penetrates 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Thirdly, the exposure dose of primary X-ray which is very high such as that of lumbar spine X-ray may be reduced by 13 times if protective aprons are worn, but it still penetrates a lot 0.3mm thick Pb protective aprons at SID 50cm, 1m, and 2m. Therefore, people in X-ray room should not only wear protective aprons at any spaces that the primary X-ray can reach, but also need to stand behind the thick Pb shield to protect the body if it is inevitable to stay in the room.