• Title/Summary/Keyword: Low Dose

Search Result 2,887, Processing Time 0.027 seconds

Analysis of Trends in Dose through Evaluation of Spatial Dose Rate and Surface Contamination in Radiation-Controlled Area and Personal Exposed Dose of Radiation Worker at the Korea Institute of Radiological and Medical Sciences (KIRAMS)

  • Lee, Bu Hyung;Kim, Sung Ho;Kwon, Soo Il;Kim, Jae Seok;Kim, Gi-sub;Park, Min Seok;Park, Seungwoo;Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.146-155
    • /
    • 2016
  • As the probability of exposure to radiation increases due to an increase in the use of radioisotopes and radiation generators, the importance of a radiation safety management field is being highlighted. We intend to help radiation workers with exposure management by identifying the degree of radiation exposure and contamination to determine an efficient method of radiation safety management. The personal exposure doses of the radiation workers at the Korea Institute of Radiological & Medical Sciences measured every quarter during a five-year period from Jan. 1, 2011 till Dec. 31, 2015 were analyzed using a TLD (thermoluminescence dosimeter). The spatial dose rates of radiation-controlled areas were measured using a portable radioscope, and the level of surface contamination was measured at weekly intervals using a piece of smear paper and a low background alpha/beta counter. Though the averages of the depth doses and the surface doses in 2012 increased from those in 2011 by about 14%, the averages were shown to have decreased every year after that. The exposure dose of 27 mSv in 2012 increased from that in 2011 in radiopharmaceutical laboratories and, in the case of the spatial dose rate, the rate of decrease in 2012 was shown to be similar to the annual trend of the whole institute. In the case of the surface contamination level, as the remaining radiation-controlled area with the exception of the I-131 treatment ward showed a low value less than $1.0kBq/m^2$, the annual trend of the I-131 treatment ward was shown to be similar to that of the entire institute. In conclusion, continuous attention should be paid to dose monitoring of the radiation-controlled areas where unsealed sources are handled and the workers therein.

Size-Specific Dose Estimation In the Korean Lung Cancer Screening Project: Does a 32-cm Diameter Phantom Represent a Standard-Sized Patient in Korean Population?

  • Kim, Eun Young;Kim, Tae Jung;Goo, Jin Mo;Kim, Hyae Young;Lee, Ji Won;Lee, Soojung;Lim, Jun-tae;Kim, Yeol
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1179-1186
    • /
    • 2018
  • Objective: The purposes of this study were to evaluate size-specific dose estimate (SSDE) of low-dose CT (LDCT) in the Korean Lung Cancer Screening (K-LUCAS) project and to determine whether CT protocols from Western countries are appropriate for lung cancer screening in Korea. Materials and Methods: For participants (n = 256, four institutions) of K-LUCAS pilot study, volume CT dose index ($CTDI_{vol}$) using a 32-cm diameter reference phantom was compared with SSDE, which was recalculated from $CTDI_{vol}$ using size-dependent conversion factor (f-size) based on the body size, as described in the American Association of Physicists in Medicine Report 204. This comparison was subsequently assessed by body mass index (BMI) levels (underweight/normal vs. overweight/obese), and automatic exposure control (AEC) adaptation (yes/no). Results: Size-specific dose estimate was higher than $CTDI_{vol}$ ($2.22{\pm}0.75mGy$ vs. $1.67{\pm}0.60mGy$, p < 0.001), since the f-size was larger than 1.0 for all participants. The ratio of SSDE to $CTDI_{vol}$ was higher in lower BMI groups; 1.26, 1.37, 1.43, and 1.53 in the obese (n = 103), overweight (n = 70), normal (n = 75), and underweight (n = 4), respectively. The ratio of SSDE to $CTDI_{vol}$ was greater in standard-sized participants than in large-sized participants independent of AEC adaptation; with AEC, SSDE/$CTDI_{vol}$ in large- vs. standard-sized participants: $1.30{\pm}0.08$ vs. $1.44{\pm}0.08$ (p < 0.001) and without AEC, $1.32{\pm}0.08$ vs. $1.42{\pm}0.06$ (p < 0.001). Conclusion: Volume CT dose index based on a reference phantom underestimates radiation exposure of LDCT in standard-sized Korean participants. The optimal radiation dose limit needs to be verified for standard-sized Korean participants.

A Study for Comparison of Risk Estimates According to Extrapolating Methods of Benzo(a)Pyrene in the Ambient Air (대기중 Benzo(a) pyrene의 외삽방법에 따른 위해도 추계치의 비교 연구)

  • Kim, Jong-Man;Chung, Yong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 1992
  • The risk of benzo(a)pyrene for cancer in the ambient air of Seoul was assessed by using the extrapolation methods. The average daily lifetime exposure of benzo(a)pyrene in the ambient air of Seoul was calculated at 6.97-24.30ng/$m^2$/day, which was based on the occurrence analysis of benzo(a)pyrene in the residential(Bull Kwang Dong) and traffic areas(Shin Chon) of Seoul. Using the dose scaling based on body surface area in comparisons of toxicity for extrapolation from animal to human and mathematical models from the high dose region, the low-dose risk was estimated. The response probabilities were estimated by the tolerance distribution models; Probit, Logit and Weibull model. They were consistent with the observed ones at experimental dose region. The unit risk estimates of these models were too low to be used. One-hit and multistage model to prove more conservative risk was selected. As a redult, the lifetime unit risk of benzo(a)pyrene for cancer and virtually safe dose were calculated; One-hit model provided the risk 2.8 $\times 10^{-7}$ and 3.4ng/$m^3$, respectively and multistage model provided 5.2 $\times 10^{-7}$ and 1.9ng/$m^3$ as the more conservatives. The lifetime excess risk estimates of benzo(a)pyrene for cancer were calculated at 0.37-1.30 persons/million persons by one-hit model and 0.69-2.41 persons/million persons by multistage model, which was considered in without virtual risk.

  • PDF

Behavioral and Physiological Effects Induced by the Acute Administration of Melatonin in Healthy Young Men (정상인에서의 멜라토닌 투여에 따른 행동 및 생리적 효과)

  • Joe, Sook-Haeng;Nam, Min
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.5 no.2
    • /
    • pp.195-204
    • /
    • 1997
  • Objectives : The behavioral and physiological effects following low doses and high doses of melatonin have not been fully explored. In this study the authors investigated the nature and extent of the hypnotic effects, oral temperature, blood pressure effects, performance effects and subjective feelings following the acute administration of low pharmacological oral doses of melatonin at mid-day. Methods : Thirty-five healthy young medical students were randomly assigned to receive 6mg of oral melatonin(N=11), 12mg of oral melatonin(N=12) or a placebo(N=12) in a double-blind, placebo controlled trial. Measures of the behavioral and physiological effects used in the study were Stanford Sleepiness Scale, Digit Symbol Substitution Test, Trail test and visual analogue scale for subjective feelings. Oral temperature and blood pressure were measured. The subjects were studied between 10:00 and 16:00 hours. Data were analyzed by using repeated-measures analyses of variance(ANOVA). Results: Melatonin produced statistically significant effects on oral temperature, but there were no significant effects on time and the $dose{\times}time$ interaction. There was a significant difference on oral temperature between the 12mg oral melatonin group and the placebo group at 12:00 and 16:00 hours, but no significant difference between the 12mg and the 6mg oral melatonin groups. Melatonin produced a dose-related increase in subjective sleepiness and had significant effects on time, the $dose{\times}time$ interaction. There was a significant difference on subjective sleepiness among the placebo, 6mg, 12mg oral melatonin groups at 13:00-16:00 hours. Melatonin did not produce statistically significant dose-related effects on subjective fatigue but produced significant effects on time and the $dose{\times}time$ interaction. There was a significant difference on subjective fatigue between the 12mg, the 6mg oral melatonin groups and the placebo group at 13:00 hour. Conclusions : These data indicated that acute administration of melatonin at mid-day increased subjective sleepiness and fatigue but decreased oral temperatures. These effects were shown especially in 12mg oral melatonin group.

  • PDF

Clonal plant as experimental organisms - DNA mutation rate evaluation in the radiation contaminated area of Fukushima Daiichi NPP accident

  • KANEKO, Shingo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.25-25
    • /
    • 2018
  • The Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused severe radioactive contamination in the surrounding environment. Since the accident, much attention has been paid to the biological and genetic consequences of organism inhabiting the contaminated area. The effect of radiation exposure on genetic mutation rates is little known, especially for low doses and in situ conditions. Evaluating DNA mutation by low levels of radiation dose is difficult due to the rare mutation event and lack of sequence information before the accident. In this study, correlations with air dose levels and somatic DNA mutation rates were evaluated using Next Generation Sequencer for the clonal plant, Phyllostachys edulis. This bamboo is known to spread an identical clone throughout Japan, and it has the advantage that we can compare genetic mutation rate among identical clone growing different air dose levels. We collected 94 samples of P. edulis from 14 sites with air dose rates from $0.04{\sim}7.80{\mu}Gy/h$. Their clonal identity was confirmed by analysis using 24 microsatellite markers, and then, sequences among samples were compared by MIG sequence. The sequence data were obtained from 2,718 loci. About ~200,000 bp sequence (80 bp X 2,718 loci) were obtained for each sample, and this corresponds to about 0.01% of the genome sequence of P. edulis. In these sequences, 442 loci showed polymorphism patterns including recent origin mutation, old mutation, and sequence errors. The number of mutations per sample ranged from 0 to 13, and did not correlate with air dose levels. This result indicated that DNA mutations have not accumulated in P. edulis living in the air doses levels less than $10{\mu}Gy/h$. Our study also suggests that mutation rates can be assessed by selecting an appropriate experimental approach and analyzing with next generation sequencer.

  • PDF

Scattering Measurement of Syringe Shield Used in PET/CT (PET/CT실에서 사용되는 주사기 차폐체의 산란선 측정)

  • Jang, Dong-Gun;Park, Cheol-Woo;Park, Eun-Tae
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.375-382
    • /
    • 2020
  • PET/CT is a medical equipment that detects 0.511 MeV of gamma rays. The radiation workers are inevitably exposed to ionizing radiation in the process of handling the isotope. Accordingly, PET/CT workers use syringe shields made of lead and tungsten to protect their hands. However, lead and tungsten are known to generate very high scattering particles by interacting with gamma rays. Therefore, in this study, we tried to find out the effect on the scattering particles emitted from the syringe shield. In the experiment, first, the exposure dose to the hand (Rod phantom) was evaluated according to the metal material (lead, tungsten, iron, stainless steel) using Monte Carlo simulation. The exposure dose was compared according to whether or not plastic is attached. Second, the exposure dose of scattering particles was measured using a dosimeter and lead. As a result of the experiment, the shielding rate of plastics using the Monte Carlo simulation showed the largest difference in dose of about 40 % in lead, and the lowest in iron, about 15 %. As a result of the dosimeter test, when the plastic tape was wound on lead, it was found that the reduction rate was about 15 %, 28 %, and 39 % depending on the thickness. Based on the above results, it was found that 0.511 MeV of gamma ray interacts with the shielding tool to emit scattered rays and has a very large effect on radiation exposure. However, it was considered that the scattering particles could be sufficiently removed with plastics with a low atomic number. From now on, when using high-energy radiation, the shielding tool and the skin should not be in direct contact, and should be covered with a material with a low atomic number.